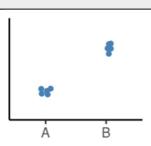
Models and contrasts in R/DESeq2

CAMBRIDGE

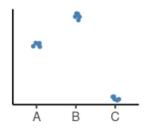
Outline

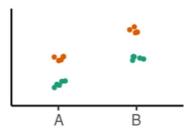
- How to interpret linear models coefficients
 - o categorical variables & model matrix



How to specify models in R using the "formula syntax"

- How to interpret the results of different model designs
 - One factor, 3 levels
 - Two factors, additive
 - Two factors, interaction





How DESeq2 reports its results and how to interpret them

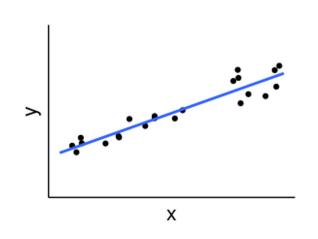
Linear Models in R

A model is a simplified representation of how we think different variables relate to each other.

Linear models are the most commonly used in statistical inference.

$$Y = \beta_0 + \beta_1 X$$

Intercept Slope



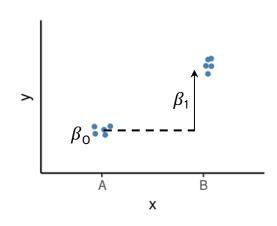
Linear Models in R | Categorical Variables

	×
	<factor></factor>
7 4	
sample1	A
sample2	A
sample3	A
sample4	В
sample5	В
sample6	В



Linear Models in R | Categorical Variables

	x <factor></factor>
sample1	A
sample2	А
sample3	A
sample4	В
sample5	В
sample6	В



Model:

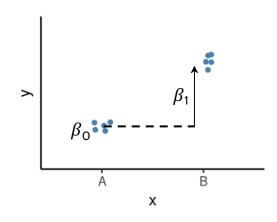
$$Y = \beta_0 + \beta_1 X_B$$

 β_0 = average of the reference group β_1 = **difference** to the reference group

Linear Models in R | Categorical Variables

	X	хB
	<factor></factor>	
sample1	A	0
sample2	A	0
sample3	A	0
sample4	В	1
sample5	В	1
sample6	В	1

Indicator / Dummy variable



Model:

$$Y = \beta_0 + \beta_1 X_B$$

 β_0 = average of the reference group β_1 = **difference** to the reference group

Example:

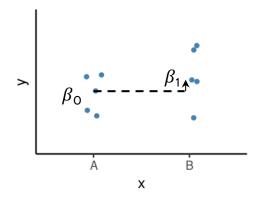
$$\beta_0 = 5; \ \beta_1 = 3$$
 $Y = 5 + 3 * X_B$

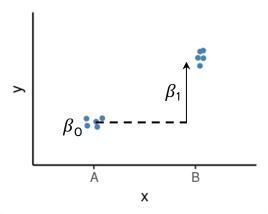
$$Y = 5 + \begin{cases} 3 * 0 = 5 & \text{if "A"} \\ 3 * 1 = 8 & \text{if "B"} \end{cases}$$

Linear Models in R | Null Hypothesis Testing

How compatible is my data with a "boring" hypothesis?

Null hypothesis: $\beta_1 = 0$





Model:

$$Y = \beta_0 + \beta_1 X_B$$

 β_0 = average of the reference group β_1 = difference to the reference group

Test statistic: $\beta_1 / \sigma_{\beta 1}$

(our estimate divided by the uncertainty in that estimate)

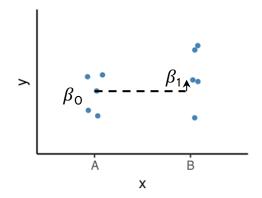
P-value calculated from the test statistic

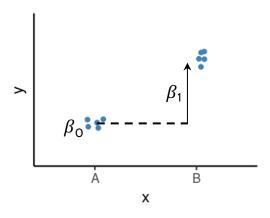
 Low p-value indicates that the data are not very compatible with the null hypothesis.

Linear Models in R | Null Hypothesis Testing

How compatible is my data with a "boring" hypothesis?

Null hypothesis: $\beta_1 = 0$





Model:

$$Y = \beta_0 + \beta_1 X_B$$

 β_0 = average of the reference group β_1 = difference to the reference group

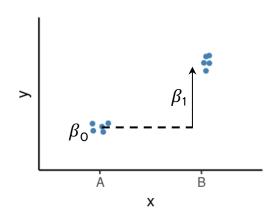
Exercise 1

Test statistic: $\beta_1 / \sigma_{\beta 1}$

(our estimate divided by the uncertainty in that estimate)

P-value calculated from the test statistic

 Low p-value indicates that the data are not very compatible with the null hypothesis.



Model:

$$Y = \beta_0 + \beta_1 X_B$$

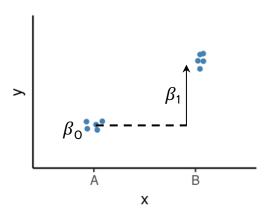
 β_0 = average of the reference group β_1 = difference to the reference group

Formula syntax in R:

outcome ~ predictors

Formula syntax in R:

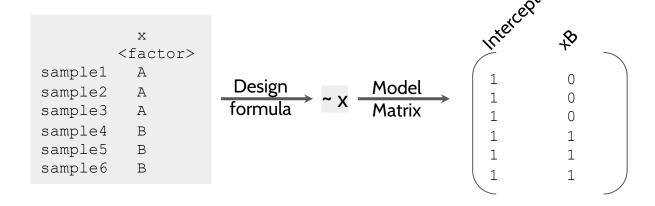
outcome ~ predictors



Model:

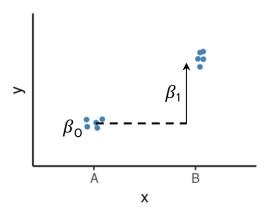
$$Y = \beta_0 + \beta_1 X_B$$

 β_0 = average of the reference group β_1 = **difference** to the reference group



Formula syntax in R:

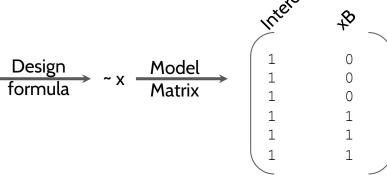
outcome ~ predictors



Model:

$$Y = \beta_0 + \beta_1 X_B$$

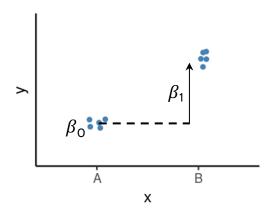
 β_0 = average of the reference group β_1 = **difference** to the reference group



Example in R worksheet: "Model Specification - Formula Syntax"

Formula syntax in R:

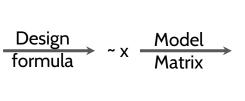
outcome ~ predictors

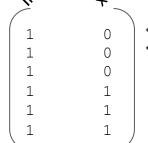


Model:

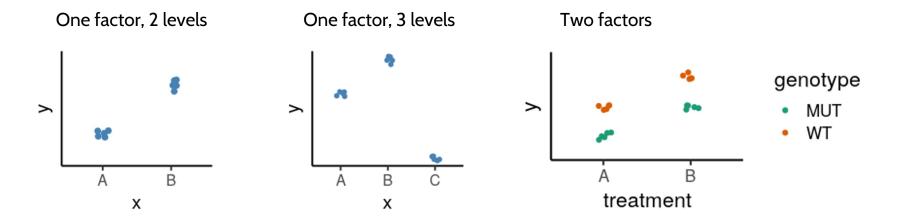
$$Y = \beta_0 + \beta_1 X_B$$

 β_0 = average of the reference group β_1 = difference to the reference group





Common Designs



- Define our model with formula syntax
- Categorical variables are encoded as indicator variables in a model matrix
 - R does this for us
- Interpret coefficients to define hypothesis of interest

Common Designs | One factor, 3 levels

	drug
sample1	Pink
sample2	Pink
sample3	Pink
sample4	Yellow
sample5	Yellow
sample6	Yellow
sample7	White
sample8	White
sample9	White

Null hypothesis:

Pink vs White $\beta_1 = 0$

Yellow vs White $\beta_2 = 0$

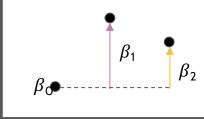
Yellow vs Pink $\beta_2 - \beta_1 = 0$

Design:

~ drug

Model matrix

	(Intercept)	drugPink	drugYellow
1	1	1	0
2	1	1	0
3	1	1	0
4	1	0	1
5	1	0	1
6	1	0	1
7	1	0	0
8	1	0	0
9	1	0	0



Expr = β_0 + β_1 drug_{Pink} + β_2 drug_{Yellow}

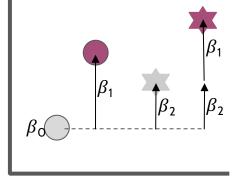
Model Designs | Two factors - additive model

	drug	genotype
sample1	Pink	V
sample2	Pink	WT
sample3	Pink	MUT
sample4	Pink	MUT
sample5	White	ML
sample6	White	V
sample7	White	MUT
sample8	White	MUT

Design:

Pink vs White drug $\beta_1 = 0$

WT vs MUT genotype $\beta_2 = 0$



MUT

WT

Model Matrix:

(In	tercept)	drugPink	
genot	ypeMUT		
1	1	1	0
2	1	1	0
3	1	1	1
4	1	1	1
5	1	0	0
6	1	0	0
7	1	0	1
8	1	0	1

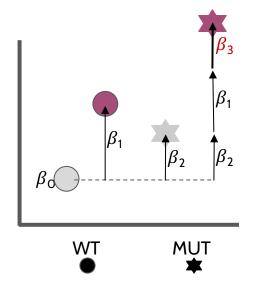
Expr =
$$\beta_0$$
 + β_1 drug_{Pink} + β_2 genotype_{MUT}

Model Designs | Two factors - interaction model

	drug	genotype
sample1	Pink	WT
sample2	Pink	WT
sample3	Pink	MUT
sample4	Pink	MUT
sample5	White	V
sample6	White	WT
sample7	White	MUT
sample8	White	MUT

Design:

Expr =
$$\beta_0$$
 + β_1 drug_{Pink} + β_2 genotype_{MUT} + β_3 drug_{Pink}genotype_{MUT}



Null hypothesis:

Pink vs White (<u>WT</u>) $\beta_1 = 0$

Pink vs White (<u>MUT</u>) $\beta_1 + \beta_3 = 0$

WT vs MUT (<u>White</u>) $\beta_2 = 0$

WT vs MUT (Pink) $\beta_2 + \beta_3 = 0$

Interaction ("Difference of differences"): $\beta_3 = 0$

Model Specification in *DESeq2*

- Create DESeqDataSet object
- Add model design:

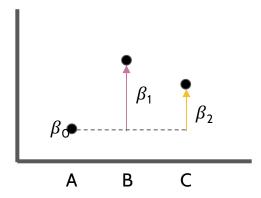
```
\texttt{design(dds)} \; \leftarrow \; \text{``treatment}
```

- Fit the statistical model

```
dds \leftarrow DESeq(dds)
```

Check coefficients for hypothesis testing

resultsNames (dds)

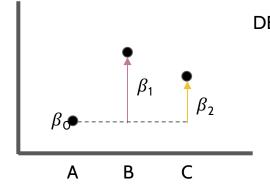


Model Specification in *DESeq2*

- Create DESeqDataSet object
- Add model design: $design(dds) \leftarrow \sim treatment$
- Fit the statistical model $dds \leftarrow DESeq(dds)$
 - Check coefficients for hypothesis testing

resultsNames (dds)

	Null Hypothesis
B vs A	β ₁ = O
C vs A	β ₂ = O
C vs B	β_2 - β_1 = O



DESeq coefficient names:

$$\beta_0 \rightarrow \text{Intercept}$$
 $\beta_1 \rightarrow \text{treatment_B_vs_A}$
 $\beta_2 \rightarrow \text{treatment_C_vs_A}$

 $\beta_2 \rightarrow \text{treatment_C_vs_A}$

Model Specification in *DESeq2* | **Interpreting the Results**

```
results(dds, contrast = list("treatment_B_vs_A"))
```

```
baseMean log2FoldChange
                                    lfcSE
                                               stat
                                                       pvalue
                                                                   padi
        <numeric>
                      <numeric> <numeric> <numeric> <numeric> <numeric>
        32.80405
                       0.359444 0.598072 0.601004 0.5478372 0.923764
gene1
gene2
         4.01072
                       3.407763 1.649827 2.065527 0.0388732 0.641407
                                          0.747749 0.4546118 0.923764
gene3
         7.01837
                       0.743337 0.994100
         1.51006
                       2.814822 2.464686 1.142061 0.2534287 0.923764
gene4
        11.23166
                       0.480522 0.894709
                                          0.537071 0.5912189
                                                              0.923764
gene5
gene96
        16.21864
                       0.684962
                                 0.809892 0.845745 0.3976952
                                                              0.923764
                                           0.996805 0.3188590
aene97
         2.91349
                       1.784327 1.790046
                                                              0.923764
                      -0.634070 0.768728 -0.824830 0.4094680
gene98
        13.29915
                                                              0.923764
        82.45653
                      -0.963147 0.505109 -1.906810 0.0565452 0.799710
gene99
         6.25763
                       1.673078 1.252839 1.335429 0.1817359 0.923764
gene100
```

baseMean \rightarrow Mean across *all* samples

 $log2FoldChange \rightarrow log_2(B/A)$ i.e. the difference between treatments

lfcSE \rightarrow the standard error of the log2FoldChange

 $stat \rightarrow the test statistic = log2FoldChange/lfcSE$

pvalue \rightarrow the p-value of the Wald test

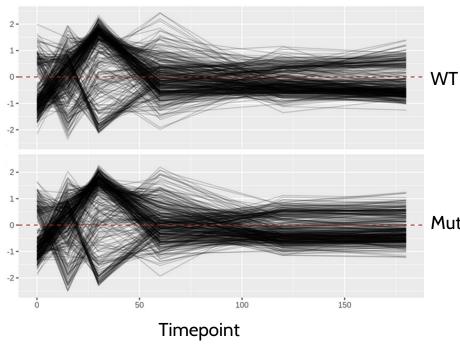
padj \rightarrow the p-value adjusted for multiple testing (false discovery rate)

Model Specification in *DESeq2* | **Likelihood-ratio Test**

The default test in *DESeq2* is the Wald test, testing for null hypothesis that LFC = 0

And alternative is the **Likelihood Ratio Test**

$$LR = -2ln\left(rac{L(m_1)}{L(m_2)}
ight)$$



Example:

design(dds) ← ~ genotype + timepoint + genotype:timepoint dds ← DESeq(dds, test = "LRT", reduced = ~ genotype)

Mutant

Conclusions

- Differential expression tests are based on linear models, where the gene expression is modelled as an outcome of several variables of interest (e.g. treatment, genotype, infection status, etc.).
- Linear models use *indicator or dummy variables* to encode categorical variables in a model matrix.
- To define models in R/DESeq2 we use the formula syntax: ~ variables
- Some common models are:
 - Single factor: ~ variable1
 - Two factor, additive: ~ variable1 + variable2
 - Two factor, interaction: ~ variable1 + variable2 + variable1:variable2
- Interpreting our model coefficients allows us to define hypothesis/comparisons/contrasts of interest.
- In DESeq2 we use the `results()` function to obtain the log2(fold-change) in gene expression between groups of interest ("contrast").