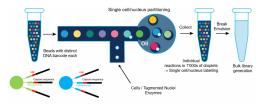

Alignment and feature counting

Ashley Sawle, Chandra Chilamakuri


March 2024

Single Cell RNAseq Analysis Workflow

10x technology overview

- GEM: Gel Bead-In-EMulsion
- Millions of GEMs
- Each GEM comes with thousands of oligonucleotide sequences
- Each oligo sequence has cell barcode + UMI + capture sequence

10x library file structure

The 10x library contains four pieces of information, in the form of DNA sequences, for each "read".

- sample index identifies the library, with one or two indexes per sample
- 10x barcode identifies the droplet in the library
- UMI identifies the transcript molecule within a cell and gene
- insert the transcript molecule

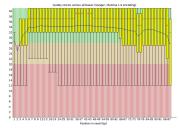
Raw fastq files

The sequences for any given fragment will generally be delivered in 3 or 4 files:

- I1: I7 sample index
- ▶ 12: 15 sample index if present (dual indexing only)
- R1: 10x barcode + UMI
- R2: insert sequence

QC of Raw Reads - FASTQC

*R*FastQC Report


Summary

Desic Statistic Pic has senance availy Pic has senance availy Pic has senance availy Pic senance availy screes Pic senance availy screes Pic has senance content Pic senance availed available Pic has senance availed available Pic has senance available Pic has been content

Basic Statistics

Measure	Value				
Filename	SRR9264344_50_L001_R2_001.fastq.g				
File type	Conventional base calls				
Encoding	Sanger / Illumina 1.9				
Total Sequences	338484786				
Sequences flagged as poor quality	•				
Sequence length	98				
AGC	46				

Per base sequence quality

MultiQC SLX-21334

SLX-21334

A modular tool to aggregate results from bioinformatics analyses across many samples into a single report.

This report is for the pool SLX-21334 as sequenced in lane 2 of NovaSeq 6000 run 211220, A00489, 1183, AHTLCWDRXY,

Report generated on 2001-12-21, 09:12 based on data in: /www./soratona/sequencing/21128_A06889_1188_art.tation//processing/work/2c/etatonalises/998283aatti4

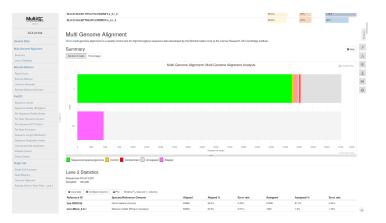
O Welcome! Not sure where to start? View a streng score (5.05)

General Statistics

A Copy table III Configure Columns A Plot Streams V-rows and V-polymers.

Sample Name	M Assigned	M Lost	% Dups	% 00	M Seqs
SLX-21334.HTLCWDRXY.8_2	450.5	25.9			
SLX-21334.HTLCWDRXY.s_2.r_2.lostreads			45.0%	44%	25.9
SLX-21004.SITTA11.HTLCWDRXY.n_2.r_2			59.8%	48%	76.4
SLX-21204.SITTB11.HTLCWORXY.s_2.r_2			68.7%	47%	0.9
8LX-21334.8ITT010.HTLCWDRXY.s_2.r_2			62.2%	47%	100.4
SLX-21394.SITTH10.HTLCWDRXY.s_2.r_2			63.5%	40%	110.5
8LX/21334.SITTH9.HTLCWDRXY.s_2.r_2			58.9%	47%	82.3

Multi Genome Alianment


MGA (multi-genome alignment) is a guality control tool for high-throughput sequence data developed by the Bioinformatics Core at the Cancer Research UK Cambridge Institute.

d)

<u>±</u>

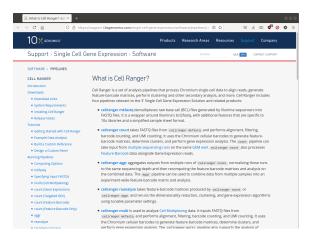
н 0

Alignment and counting

The first steps in the analysis of single cell RNAseq data:

- Align reads to genome
- Annotate reads with feature (gene)
- Quantify gene expression

Cell Ranger


 10x Cell Ranger - This not only carries out the alignment and feature counting, but will also:

- Call cells
- Generate a summary report in html format
- Generate a "cloupe" file

Alternative methods include:

- STAR solo:
 - Generates outputs very similar to CellRanger minus the cloupe file and the QC report
 - Will run with lower memory requirements in a shorter time than Cell Ranger
- Alevin:
 - Based on the popular Salmon tool for bulk RNAseq feature counting
 - Alevin supports both 10x-Chromium and Drop-seq derived data

Obtaining Cell Ranger

Cell Ranger includes a number of different tools for analysing scRNAseq data, including:

- cellranger mkref for making custom references
- cellranger count for aligning reads and generating a count matrix
- cellranger aggr for combining multiple samples and normalising the counts

Preparing the raw fastq files

Cell Ranger requires the fastq file names to follow a convention:

<SampleName>_S<SampleNumber>_L00<Lane>_<Read>_001.fastq.gz

e.g. for a single sample we may want:

SITTA11_S1_L001_I1_001.fastq.gz SITTA11_S1_L001_I2_001.fastq.gz SITTA11_S1_L001_R1_001.fastq.gz SITTA11_S1_L001_R2_001.fastq.gz

Unfortunately, the files we receive from the Genomics server will be named like this:

SLX-21334.SITTA11.HTLCWDRXY.s_2.i_1.fq.gz SLX-21334.SITTA11.HTLCWDRXY.s_2.i_2.fq.gz SLX-21334.SITTA11.HTLCWDRXY.s_2.r_1.fq.gz SLX-21334.SITTA11.HTLCWDRXY.s_2.r_2.fq.gz As with other aligners Cell Ranger requires the information about the genome and transcriptome of interest to be provided in a specific format.

- Obtain from the 10x website for human or mouse (or both -PDX)
- Build a custom reference with cellranger mkref

Running cellranger count

Computationally very intensive

High memory requirements

One directory per sample

%h%-\$
%h%-\$ ls SRR9264343/
cmdline
filelist
finalstate
invocation
jobmode
log
mrosource
buts
perf
SC RNA COUNTER CS
sitecheck
SRR9264343.mri.tgz
_tags
_timestamp
_uuid
_vdrkill
_versions
%h%-\$ []

File Edit View Search Terminal Help

versions
%h%-5
%h%-5 ls SRR9264343/outs/
analysis
cloupe.cloupe
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam.bai
raw_feature_bc_matrix
raw_feature_bc_matrix.h5
web_summary.html
%h%-5

File Edit View Search Terminal Help _versions %h%-\$

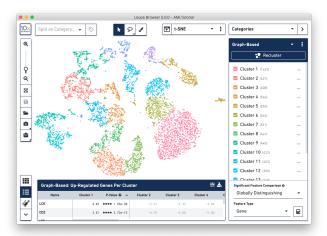
ama-s ls SRR9264343/outs/ analysis Cloupe.cloupe filtered_feature_bc_matrix.h5 metrics_summary.csv molecute_info.h5 possorted_genome_bam.bam possorted_genome_bam.bam.bai raw_feature_bc_matrix

raw feature bc matrix.h5 web_summary.html %h%-\$

Cell Ranger report

10X Cell Ranger • count			
SITTA6 Summary Analysis			
14,668 Estimated Number of Cells 20,065 Mean Reads per Cell Sequencing ⊕ Number of Reads Supped	Cells © Barcode Rank Plot und und und und und und und und und und		
Valid Barcodes 97.7	TS Estimated Number of Cells 14,668		
Valid UMIs 199.0	Fraction Reads in Cells 80.8%		
Sequencing Saturation 18.6	Mean Reads per Cell 28,00		
Q30 Bases in Barcode 96.1	% Median Genes per Cell 1,344		
Q30 Bases in RNA Read 94.6	Total Genes Detected 23,106		
Q30 Bases in UMI 95.1	Median UMI Counts per Cell 2,928		
Mapping ®	Sample		
Reads Mapped to Genome 93.6	Sample ID SITTA6		

89.7%


Reads Mapped to Genome
Reads Mapped Confidently to Genome

Sample Description

File Edit View Search Terminal Help

_versions %h%-5 %h%-5 ls SRR9264343/outs/ analysis cloupe.cloupe filtered_feature_bc_matrix.h5 metrics_summary.csv molecule_info.h5 possorted_genome_bam.bam possorted_genome_bam.bam.bai raw_feature_bc_matrix raw_feature_bc_matrix.h5 web_summary.html %h%-5

Loupe Browser

File Edit View Search Terminal Help

_versions %h%-5 %h%-5 %h%-5 ls SRR9264343/outs/ analysis cloupe.cloupe filtered_feature_bc_matrix filtered_feature_bc_matrix.h5 metrics_summary.csv molecule_info.h5 possorted_genome_bam.bam.bai possorted_genome_bam.bam.bai possorted_genome_bam.bam.bai paw_feature_bc_matrix raw_feature_bc_matrix.h5 web_summary.html %h%-5

File Edit View Search Terminal Help

_versions %th%-\$ %th%-\$ ls SRR9264343/outs/ analysis cloupe.cloupe filtered_feature_bc_matrix.h5 metrics_summary.csv molecule_info.h5 possorted_genome_bam.bam possorted_genome_bam.bam possorted_genome_bam.bam

raw_feature_bc_matrix.h5

web_summary.html %h%-\$

File Edit View Search Terminal Help

_versions %h%-5 %h%-5 SRR9264343/outs/ analysis cloupe.cloupe filtered_feature_bc_matrix. filtered_feature_bc_matrix.h5 metrics_summary.csv molecule_info.h5 possorted_genome_bam.bam possorted_genome_bam.bai raw_feature_bc_matrix

raw_Feature_bc_matrix.h5 web_summary.html %h%-\$ %h%-\$ ls SRR9264343/outs/raw_feature_bc_matrix barcodes.tsv.oz

eatures.tsv.gz

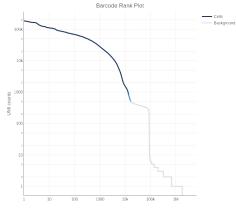
%h%-\$ 🗌

File Edit View Search Terminal Help

_versions %h%-\$ %h%-\$ ls SRR9264343/outs/ apalysis

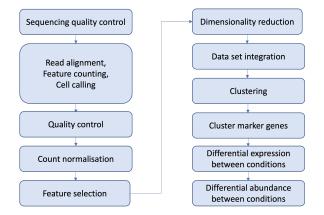
cloupe.cloupe

filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5


metrics_summary.csv molecule_info.h5 possorted_genome_bam.bam possorted_genome_bam.bam.bai

raw_feature_bc_matrix
raw_feature_bc_matrix.h5

web_summary.html


%h%-\$

Cell Ranger cell calling

Barcodes

Single Cell RNAseq Analysis Workflow

