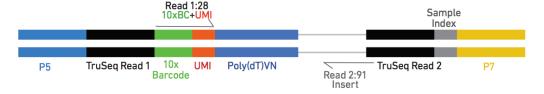


Alignment and feature counting

Ashley Sawle April 2022

Single Cell RNAseq Analysis Workflow



10x library file structure

The 10x library contains four pieces of information, in the form of DNA sequences, for each "read".

- **sample index** identifies the library, with one or two indexes per sample
- 10x barcode identifies the droplet in the library
- UMI identifies the transcript molecule within a cell and gene
- insert the transcript molecule

Chromium Single Cell 3' Gene Expression Library

Raw fastq files

The sequences for any given fragment will generally be delivered in 3 or 4 files:

- I1: I7 sample index
- I2: I5 sample index if present (dual indexing only)
- R1: 10x barcode + UMI
- R2: insert sequence

QC of Raw Reads - FASTQC

№FastQC Report

Summary

Basic Statistics

Per base sequence quality

Per tile sequence quality

Per sequence quality scores

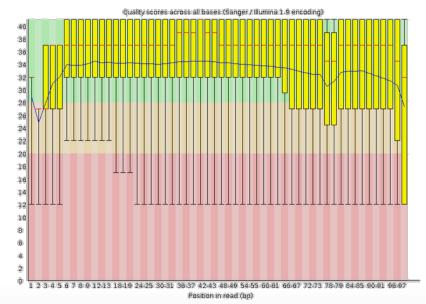
Per base sequence content

Per sequence GC content

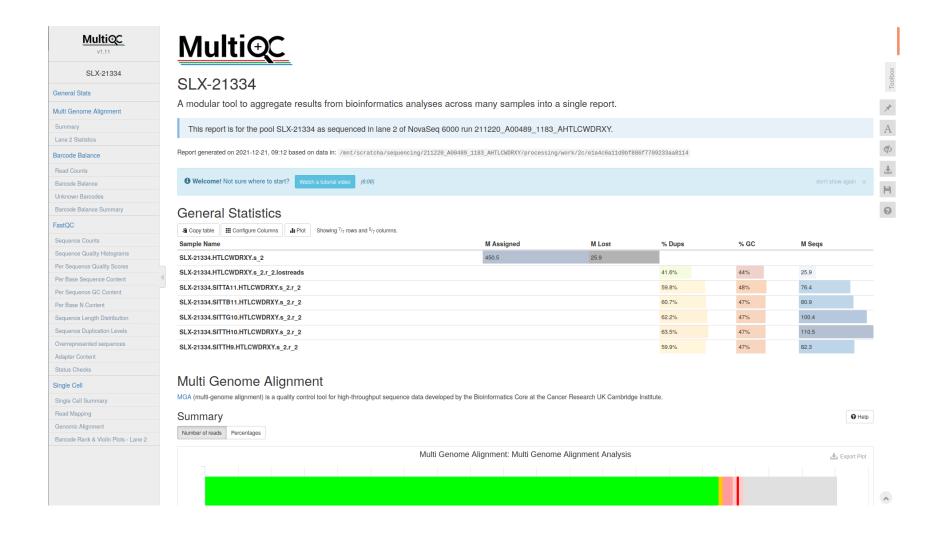
Per base N content

Sequence Length Distribution

Sequence Duplication Levels


Overrepresented sequences

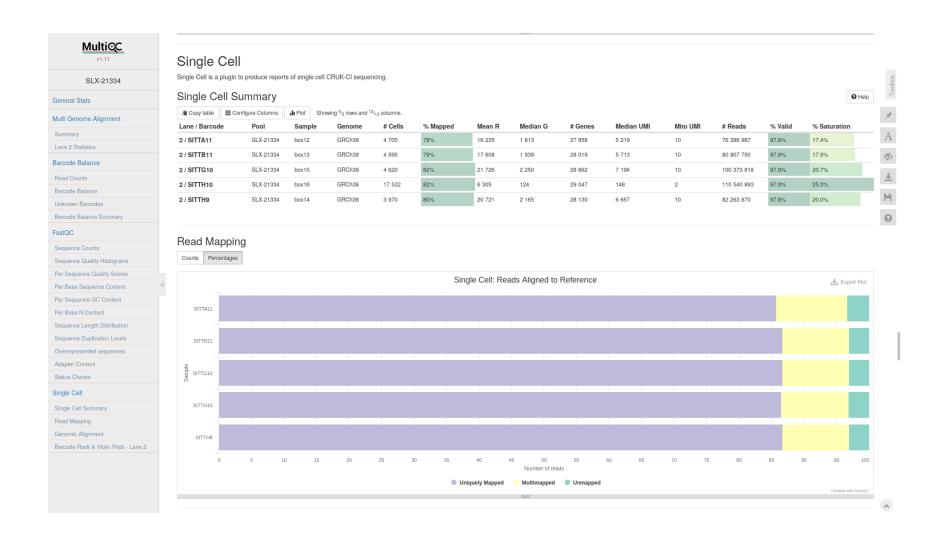
Adapter Content


⊘Basic Statistics

Measure	Value
Filename	SRR9264344_S0_L001_R2_001.fastq.gz
File type	Conventional base calls
Encoding	Sanger / Illumina 1.9
Total Sequences	330404706
Sequences flagged as poor quality	0
Sequence length	98
%GC	46

Per base sequence quality

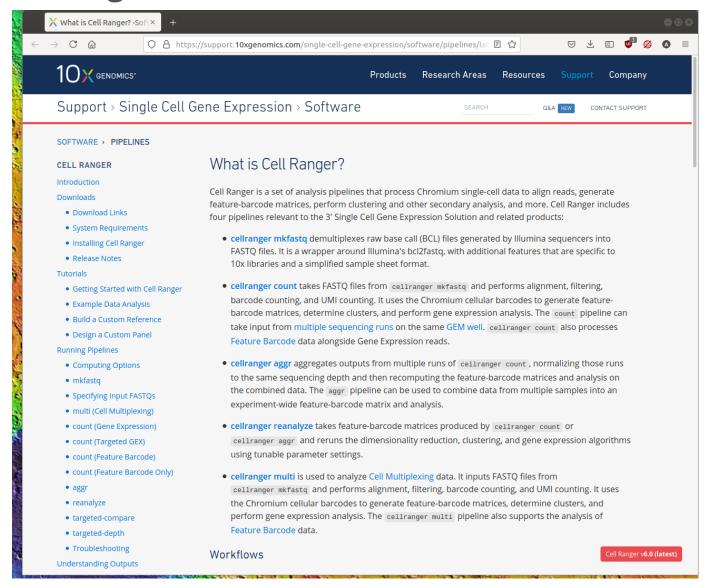




Alignment and counting

The first steps in the analysis of single cell RNAseq data:

- Align reads to genome
- Annotate reads with feature (gene)
- Quantify gene expression


Cell Ranger

- 10x Cell Ranger This not only carries out the alignment and feature counting, but will also:
 - Call cells
 - Generate a summary report in html format
 - Generate a "cloupe" file

Alternative methods include:

- STAR solo:
 - Generates outputs very similar to CellRanger minus the cloupe file and the QC report
 - Will run with lower memory requirements in a shorter time than Cell Ranger
- Alevin:
 - Based on the popular Salmon tool for bulk RNAseq feature counting
 - Alevin supports both 10x-Chromium and Drop-seq derived data

Obtaining Cell Ranger

Cell Ranger tools

Cell Ranger includes a number of different tools for analysing scRNAseq data, including:

- cellranger mkref for making custom references
- cellranger count for aligning reads and generating a count matrix
- cellranger aggr for combining multiple samples and normalising the counts

Preparing the raw fastq files

Cell Ranger requires the fastq file names to follow a convention:

```
<SampleName>_S<SampleNumber>_L00<Lane>_<Read>_001.fastq.gz
```

e.g. for a single sample we may want:

```
SITTA11_S1_L001_I1_001.fastq.gz
SITTA11_S1_L001_I2_001.fastq.gz
SITTA11_S1_L001_R1_001.fastq.gz
SITTA11_S1_L001_R2_001.fastq.gz
```

Unfortunately, the files we receive from the Genomics server will be named like this:

```
SLX-21334.SITTA11.HTLCWDRXY.s_2.i_1.fq.gz
SLX-21334.SITTA11.HTLCWDRXY.s_2.i_2.fq.gz
SLX-21334.SITTA11.HTLCWDRXY.s_2.r_1.fq.gz
SLX-21334.SITTA11.HTLCWDRXY.s 2.r 2.fq.gz
```


Genome/Transcriptome Reference

As with other aligners Cell Ranger requires the information about the genome and transcriptome of interest to be provided in a specific format.

- Obtain from the 10x website for human or mouse (or both PDX)
- Build a custom reference with cellranger mkref

Running cellranger count

- Computationally very intensive
- High memory requirements

One directory per sample

```
File Edit View Search Terminal Help
%h%-$
%h%-$ ls SITTB11
cmdline
filelist
_finalstate
invocation
_jobmode
log
mrosource
_perf
sitecheck
 tags
_timestamp
uuid
vdrkill
versions
```



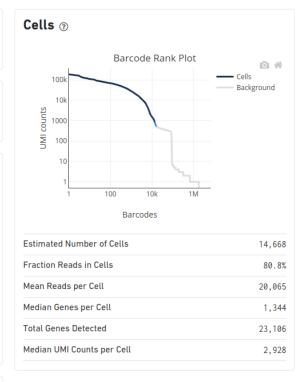
```
File Edit View Search Terminal Help
versions
%h%-$
%h%-$ ls SITTB11/outs
cloupe.cloupe
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bai
raw_feature_bc_matrix.h5
web_summary.html
%h%-$
```



```
File Edit View Search Terminal Help
versions
%h%-$
%h%-$ ls SITTB11/outs
cloupe.cloupe
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bai
raw_feature_bc_matrix.h5
web_summary.html
%h%-$
```

Cell Ranger report

SITTA6


Summary Analysis

14,668
Estimated Number of Cells

20,065 1,344
Mean Reads per Cell Median Genes per Cell

Number of Reads	294,310,066
Number of Short Reads Skipped	0
Valid Barcodes	97.7%
Valid UMIs	100.0%
Sequencing Saturation	18.6%
Q30 Bases in Barcode	96.1%
Q30 Bases in RNA Read	94.6%
Q30 Bases in UMI	95.79

Mapping ③	
Reads Mapped to Genome	93.6%
Reads Mapped Confidently to Genome	89.7%

Sample	
Sample ID	SITTA6
Sample Description	

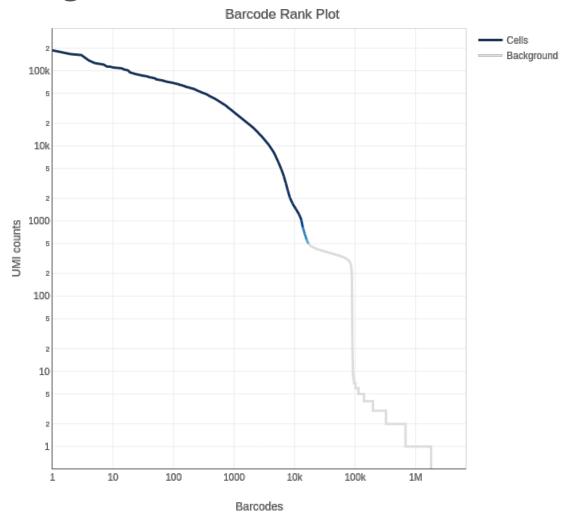

```
File Edit View Search Terminal Help
versions
%h%-$
%h%-$ ls SITTB11/outs
cloupe.cloupe
filtered_feature_bc_matrix
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bai
raw_feature_bc_matrix.h5
web_summary.html
%h%-$
```


Loupe Browser


```
File Edit View Search Terminal Help
versions
%h%-$
%h%-$ ls SITTB11/outs
cloupe.cloupe
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bam.bai
raw_feature_bc_matrix
raw_feature_bc_matrix.h5
web_summary.html
%h%-$
```

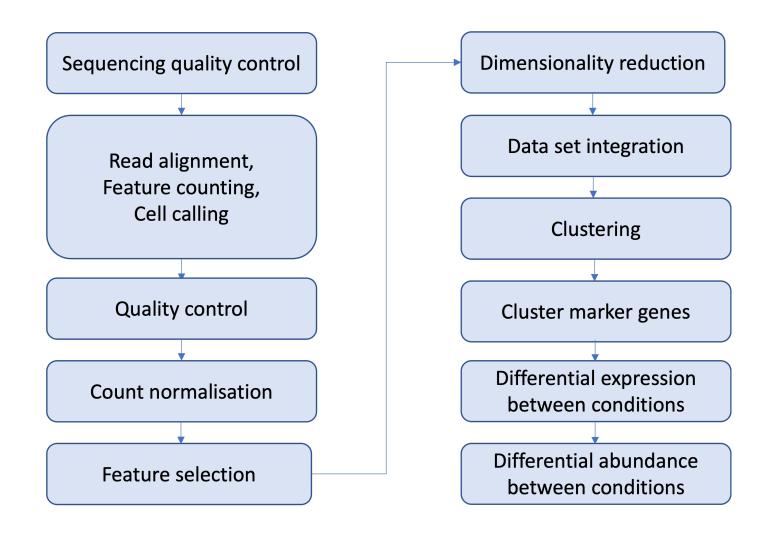


```
File Edit View Search Terminal Help
versions
%h%-$
%h%-$ ls SITTB11/outs
cloupe.cloupe
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bai
raw_feature_bc_matrix.h5
web_summary.html
%h%-$
```



```
File Edit View Search Terminal Help
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bai
raw_feature_bc_matrix.h5
web_summary.html
%h%-$
%h%-$ ls SITTB11/outs/raw_feature_bc_matrix
barcodes.tsv.gz
features.tsv.gz
```



```
File Edit View Search Terminal Help
versions
%h%-$
%h%-$ ls SITTB11/outs
cloupe.cloupe
filtered_feature_bc_matrix.h5
metrics_summary.csv
molecule_info.h5
possorted_genome_bam.bam
possorted_genome_bam.bam.bai
raw_feature_bc_matrix.h5
web_summary.html
%h%-$
```



Cell Ranger cell calling

Single Cell RNAseq Analysis Workflow

