

An introduction to
Unix* and the† shell

(*) unix-like operating systems
(†) actually, a shell

etc

Overview

This brief course will give you two things:

1. An introduction to Unix

2. An introduction to using the shell

…both of which will help you if you plan to
attend the cluster training course or the
bioinformatics programming courses.

This course has a practical component, you
will need a ‘virtual machine’ on your laptop.

Session I

1 Introduction
2 Files and directories
3 Creating things

Session II

4 Pipes and filters
5 Finding things

Session III

6 Transferring files
7 Loops
8 Shell scripts

Bad reasons to be here

The shell is intutive and easy to use.

We’ll let you judge…

Shell tools let us process all kinds of data.

Only if the data is suitably ‘retro’.

The shell is a good programming language.

The shell pre-dates 40 years of
important advances in software
engineering.

Good reasons to be
here

Unix-like operating systems are
everywhere, and you can control them
through the shell.

The shell allows you to automate
workflows and eliminate repetetive tasks.

The shell is the natural route to other
power tools like C, perl, R, & Java.

The shell is your gateway to the world’s
supercomputers.

cars

Android mobile devices

servers

 things*

(As in ‘internet-of-things’)

Apple
computers

Places you will find unix

But first, a warning.
It’s always 1969, and we are all American.

‘unix time’

Time stamps are encoded as the number of
seconds since 00:00 on Thursday 01 January
1970.

Unix systems administrators have big parties
every 1,000,000,000 seconds.

terminals

Unix and the shell pre-date windows and mice
so everything works fine on an old terminal.

Text is entered and printed left to right, top to
bottom.

‘Advanced’ software had moving flashing
cursors and paging.

 retro files

In 1970, most ‘files’ were lists of typewriter
commands. Many unix commands still assume
this to be true.

cccc ccc ccccc\n
cccccc\n
cccc cccc ccc\n
[EOF]

Warning – non-SI units!

Computers use binary internally, not base10, so
powers of two have a special status.

210 bytes = 1,024 B

When that was a lot of data, it was loosely
termed a ‘kilobyte’ (KB).
An SI kilobyte would be 1,000 bytes (kB).

So what is a MB?

1MB = 1,000 x 1,024 KB ?
1MB = 1,024 x 1,024 KB ?

And so on for GB, TB, PB. Definitions of the
value of a petabyte vary by ~125 TB!

caveat emptor!

ASCII

One standard was adopted – the “American
Standard Code for Information Interchange”.

This defines 128 characters, based on US
English typewriter keyboards and teletype
commands – whitespace, carriage returns,
beeps.

…no European accents, no Kanji, no Traditional
Chinese.

Punctuation and special characters (, ; $ * ?)
were the only ‘spares’ to use as special
commands. Interesting, strange or very bad
things can happen if you have these in your file
names.

Operating Systems and Processes
‘Unix’ or ‘linux’ (or ‘UNIX’) is our operating system – the program
that controls the processes and their access to the network,
screen, etc.
The shell is a process – it happens to be one that can see its own
OS, which is one of the reasons it’s so useful.

Session I

Basic navigation

Creating things

Practical session

Navigation concepts

You need to be able to navigate without a GUI.
Fortunately some things are always in the same place.
Unix file systems are trees, with the roots at the top.

Directories and files

This is the output from the command ‘ls –l’.

It shows how unix likes to think about files and directories.

Files and directories

You’ll learn how to navigate a file system,
see some of the sights, and get HOME
when you are lost.

Creating things

You’ll make some files and directories of
your own – without using your mouse
once! – and learn how to clean up after
yourself.

Editors…

Ah, yes, editing. We’re sorry. Editing before
the invention of windows wasn’t pretty.

nano

The course uses ‘nano’ as its text editor.
Those ^X characters mean “Ctrl+X”, they
are often used in unixland to get at the
“missing” ASCII characters not on the
keyboard.

It’s easy to use, but sadly it’s not standard
and you might not find it everywhere.

vi

You will find vi everywhere.

Unfortunately, you need to memorise the
commands to use it –

i – enter insert mode
a – enter insert mode
ESC, :, w, NL – write
ESC, :, q, !, NL – quit without save
…

emacs

emacs was as good as editors got before
windows GUI editors arrived. It allows you
to open multiple files, has online help, and
powerful search and replace.

pwd
‘print working directory’

This tells you where you are in the file system,
and how deep.

whoami
‘who am I (logged in as)?’

Not as stupid as it sounds – it tells you which
username you are logged in with. No spaces!

ls, ls -F
‘list’

Shows the content of the current directory.

cd
‘change directory’

The command that moves you from place to
place.

nano
‘an editor called nano’

A simple text editor for use in a terminal
window.

vi
‘visual editor’

Some day you will need to learn vi. Not today.

rm, rm -r
‘remove’

Removes a file, or (with flags) a whole branch.
rm does not forgive. There is no wastebasket.

rmdir
‘remove directory’

It removes a directory – but is relatively
forgiving.

mkdir
‘make directory’

Creates a new directory, in the current
directory.

touch
Literally, ‘touch’

Updates the timestamp on a file, or creates it if
it doesn’t exist.

Hands-on sessions

None of this will make sense until you have
tried it yourself. It’s easy to get access to a
shell, but to give you all identical
environments we’ve used some advanced
machinery (Virtual Machines, Docker).

Nelle’s data

Nelle’s group share a file system:

And Nelle’s data is in her home directory:

The problem:

You are ‘Nelle Nemo’, a marine biologist.
Your supervisor has given you a great
project: but you have to use his analysis
tools, and they are command line tools that
only work on Unix machines…

Practical Session I

eOur practical sessions come courtesy of software-carpentry.org

• Get your virtual machine working

• Go to:

http://tiny.cc/crukUnix

(Which is http://bioinformatics-core-shared-training.github.io/shell-novice/)

• Work through sections I.2, and I.3

• Q & A session

http://tiny.cc/crukUnix
http://bioinformatics-core-shared-training.github.io/shell-novice/

Session II

Pipes and filters

Finding things

Practical session

etc

The anatomy of a unix command.

Unix processes have some standard ways of handling input and
output.

The “environment” is the list of properties the process picks up
from its parent. Your processes will all have the shell as their
parent.

Pipes

Laziness is seen as a virtue among computer programmers.
Rather than carry out this pattern over and over:

…you can short-circuit the stdout/stdin using a ‘pipe’.

We’ve lost <, >, and | from our keyboard – time to lose some
more.

Globbing

In the shell, * ? and […] are treated as wildcards:

*.txt – any text file
bob*.txt – matches bob.txt and bobcat.txt
bo?.txt – matches bob.txt not bobcat.txt
bo[bg].txt – matches bob.txt and bog.txt

Regular expressions

There are more complex patterns called regular expressions
which add even more complex rules (with slightly different
syntax):

^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}$

If you like regular expressions, you’ll love Perl…

Pipes and filters

You’ll learn how to use pipes, and then
you’ll connect together a pipeline of
commands to do some actual data filtering.

Finding things

This exercise shows you how to look for
patterns in text files, and some of the ways
to find individual files in a large file system.

wc
‘word count’

Counts the number of characters, words and
lines in a text file.

cat
‘concatenate’

Prints a single file or list of files to the screen.

sort, sort -n
Yes, ‘sort’

Sorts the lines of a text file alphabetically or by
number.

head, head -N
‘head’

Prints the first few lines of a file, you can
choose how many.

tail, tail -N
‘tail’

Prints the last few lines of a file.

grep
‘global regular expression print’

Search for lines in a file containing a pattern.

man command
‘manual page’

Prints the manual page for a unix command.
Very useful for flags and parameters.

find, find –name
‘find’

Search for files whose name (or other
properties) match the search parameters.

Practical Session II

• Go to:

http://tiny.cc/crukUnix

(Which is http://bioinformatics-core-shared-training.github.io/shell-novice/)

• Work through II.4 and II.5

• Q & A session

http://tiny.cc/crukUnix
http://bioinformatics-core-shared-training.github.io/shell-novice/

Session III

Traversing the internet

Loops and scripts

Practical session

Moving data, or yourself

Most of the ways of moving data around the internet were
developed for Unix first. You also have the option of going to
where the data is, with a remote shell.

Shell programming

The shell gets to each line you type before it is passed to a unix
command. So not everything you type is a unix command, some
are instructions to the shell’s own language.

Beware! There are many different shells, and each is programmed
in a slightly different way. We’re using bash

In the next exercises you will use

history

…giving access to the shell’s memory of what commands you
have typed, and loops which let you repeat operations:

for x in a b c
do
 echo $x
done

Transferring files

In this exerise you will experience
telepresence, 1970-style, and rescue some
files from other computers across the
world.

Loops and shell scripts

The final exercises will introduce you to
the basics of shell programming and
scripting.

ssh
‘secure shell’

Opens up a shell session on a remote machine,
over an encrypted channel.

scp
‘secure copy’

Carries out a copy between two machines,
using the ssh machinery.

wget
‘web get’

Lets you grab a file using a url, without all that
messing around with web browsers.

ftp
‘file transfer protocol’

Creates another shell-like environment (with a
different command set), from which you can
connect to other machines and push or
retrieve files.

bash
‘Bourne again shell’

The most widely used ‘user-friendly’ shell.

sh
‘shell’

The original shell – sometimes the default.

csh
‘the Berkeley UNIX C shell’

A hard-core sys admin’s shell.

Other shells

Just for completeness, be aware that there
are different shells…

Practical Session III

http://tiny.cc/crukUnix

(Which is http://bioinformatics-core-shared-training.github.io/shell-novice/)

• Work through III.6

• Q & A session

• There are two more sections III.7, III.8 – these

introduce some programming skills, and are a bit much
for a half day introduction.

http://tiny.cc/crukUnix
http://bioinformatics-core-shared-training.github.io/shell-novice/
http://bioinformatics-core-shared-training.github.io/shell-novice/
http://bioinformatics-core-shared-training.github.io/shell-novice/
http://bioinformatics-core-shared-training.github.io/shell-novice/
http://bioinformatics-core-shared-training.github.io/shell-novice/
http://bioinformatics-core-shared-training.github.io/shell-novice/
http://bioinformatics-core-shared-training.github.io/shell-novice/
http://bioinformatics-core-shared-training.github.io/shell-novice/
http://bioinformatics-core-shared-training.github.io/shell-novice/

Feedback please: http://tiny.cc/unix-june22

Credits:

Cancer Research UK Cambridge Institute
www.cruk.cam.ac.uk

Simon Bell, computing
Mark Dunning, bioinformatics
Peter Maccallum, computing
Marc O’Brien, computing
Anne Pajon, bioinformatics

The Software Carpentry Foundation
www.software-carpentry.org

http://tiny.cc/unix-june22
http://tiny.cc/unix-june22
http://tiny.cc/unix-june22
http://tiny.cc/unix-june22
http://tiny.cc/unix-june22
http://www.cruk.cam.ac.uk/
http://www.software-carpentry.org/
http://www.software-carpentry.org/
http://www.software-carpentry.org/

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37

