
Working with ChIP-Seq Data in R/Bioconductor

Suraj Menon, Tom Carroll, Shamith Samarajiwa

September 3, 2014

Contents

1 Introduction 1

2 Working with aligned data 1
2.1 Reading in data . 1
2.2 Coverage and fragment lengths . 3
2.3 Dispersion of coverage and duplication . 4

3 Working with peak data 5
3.1 Reading in peaksets . 5
3.2 Overlapping, merging and filtering peaksets . 6
3.3 Coverage and read counts for peaks . 8
3.4 Annotation and biological exploration of peaks . 9

1 Introduction

This practical aims to introduce to analysing ChIP-seq data in R. This will include loading aligned reads
and peak call data into the R enviroment, and performing various data analyses and visualisations.

R provides support for various sequencing data formats. Here we will work with aligned reads in indexed
BAM files, signal coverage files in BigWig format, and BED files containing peaks called by MACS.

First we would need to load the libraries required:

library(chipseq)

library(GenomicRanges)

library(htSeqTools)

library(rtracklayer)

library(Rsamtools)

library(limma)

library(GenomicAlignments)

library(caTools)

1

Working with ChIP-Seq Data in R/Bioconductor 2

2 Working with aligned data

2.1 Reading in data

All files needed within this library are contained within the directory ’/Data For ChIP Practical/’ including
BAM files (.bam), BAM index files (.bam.bai), bigWig files (’bw) and Macs peaks files (.bed).

Firstly we create a BamFileList object for use within the R environment. Many packages assume the
naming convention for BAM indicies to be ’.bam.bai’ although different names may be explicitly passed
to these functions.

Use Case: Create a BamFileList object containing details of the BAM files we wish to analyse

dataDir <- "/Data_For_ChIP_Practical/"

bamFiles <- dir(file.path(getwd(), dataDir), pattern="*.bam$", full.name=T)

names(bamFiles) <- gsub(".bam","",basename(bamFiles))

bamFiles

bfList <- BamFileList(bamFiles)

bfList

Now that we have all the BAM files in a convenient list we can look at the information within the
headers using scanBamHeader() function. This requires a path to the BAM file which we can get
using the path() function.

Use Case: Extract the sam header for a single bam file and examine the structure of the list using the
str() function

path(bfList)

samHeader <- scanBamHeader(path(bfList["TF_1"]))

str(samHeader,max.level=2)

We get a list containing two components: The first is ’targets’ which contains a list of chromosomes used
in the alignment. The second is ’text’ which contains information including the species and alignment
method used.

Use Case: Explore the information provided in the sam header. Find how the data has been sorted,
the aligner used and what species the data has been aligned to.

samHeader[[1]]$targets

samHeader[[1]]$text

samHeader[[1]]$text["@HD"]

samHeader[[1]]$text["@PG"]

samHeader[[1]]$text["@CO"]

BAM files usually contain a lot of information and it is often more feasible to deal with a single
chromosome at a time for processing and analysis.

Here we will set up parameters in order to select only reads aligning to Chromosome 1

Working with ChIP-Seq Data in R/Bioconductor 3

Use Case: Extract information about chromosome 1 coordinates to set up filtering parameters using
the ScanBamParam() function.

chr1dat <- samHeader[[1]]$targets["chr1"]

chr1dat

chr1range <- GRanges(seqnames=names(chr1dat),ranges=IRanges(1,chr1dat))

param <- ScanBamParam(which=chr1range)

param

Note that in this example, we use the default ScanBamParam ’flag’ argument. However we could use this
to build further filters (e.g. to remove duplicates or other potential artifacts) using the scanBamFlag()

function. Look at the options for this function for more details using ?scanBamFlag

Use Case: Having selected an area of interest, read in read data from a single BAM file using the
parameters set using the readGAlignments() function. Convert this to a GenomicRanges object and
inspect the data contained within. Calculate the average read length of the selected reads (in case
some reads were trimmed).

alignDat <- readGAlignments(path(bfList["TF_1"]),param=param)

alignGR <- granges(alignDat)

seqlevels(alignGR) <- "chr1"

median(width(alignGR))

2.2 Coverage and fragment lengths

We can use the aligned reads to calculate genomic coverage, i.e. the profile of sequencing depth
along a genome. The coverage() function allows creation of coverage profiles in the Run Length
Encoded Lists (RLEList) format which comprises of compressed vectors of read depths at all posisions
in a chromosome with different chromosomes as different list elements. This format allows for long
stretches of genomic locations at the same depths to be compressed.

Use Case: Separate reads aligning to the positive and negative strands using the strand() accessor
function. Examine the resulting object to check for separation. Use the coverage() function to create
coverage vectors.

strand(alignGR)

alignPos <- alignGR[strand(alignGR) == "+"]

alignNeg <- alignGR[strand(alignGR) == "-"]

strand(alignPos)

strand(alignNeg)

posCov <- coverage(alignPos)

negCov <- coverage(alignNeg)

posCov

negCov

We will now focus on a specific region of known binding (chr1:211646604-211649812). We can visualise

Working with ChIP-Seq Data in R/Bioconductor 4

the coverage around this region for each strand. The distance between the positions where the positive
and negative strands show maximum coverage can give an indication of how much the reads aligning
to the two strands are shifted by.

Use Case: Extract coverage values for the region of interest. Use the runmean() function from the
caTools package to derive smoothed coverage values for plotting. Plot these coverage values for the
positive and negative strands. Calculate the approximate strand shift.

coords <- c(211646604:211649812)

subPosCov <- posCov$chr1[coords]

subNegCov <- negCov$chr1[coords]

smoothPosCov <- caTools::runmean(as.vector(subPosCov),20)

smoothNegCov <- caTools::runmean(as.vector(subNegCov),20)

pdf("NoReadExtension.pdf", width=14)

plot(smoothNegCov, col="red", type="l",

ylab="Smoothed Read Depth 20bp Window",

xlab="bp from range start")

lines(smoothPosCov,col="blue",type="l")

abline(v=which.max(smoothNegCov), col="red", lty=2)

abline(v=which.max(smoothPosCov), col="blue", lty=2)

dev.off()

which.max(smoothNegCov) - which.max(smoothPosCov)

Estimating fragment length is an important step in ChIP-Seq data processing as a QC measure and as
a precursor to further analyses such as peak calling to identify transription factor binding sites. Here
we estimate fragment length using the cross-coverage methodology. This involves shifting reads from
one strand and attempting the find the shift required such that the proportion of the genome covered
by the reads is minimized.

Use Case: Estimate fragment length by cross-coverage method using the estimate.mean.fraglen()
function from the chipseq package [NOTE using the median function is redundant since we are working
with a single chromosome in this example]. Extend reads to estimated fragment length. Plot coverage
for extended reads aligned to positive and negative strands.

fragLen <- median(estimate.mean.fraglen(c(alignPos ,alignNeg),method="coverage"))

fragLen

extendReads <- resize(alignGR, fragLen, fix="start")

median(width(alignGR))

median(width(extendReads))

extPos <- extendReads[strand(extendReads) == "+"]

extNeg <- extendReads[strand(extendReads) == "-"]

smoothPosCovExt <- caTools::runmean(as.vector(coverage(extPos)$chr1[coords]),20)

smoothNegCovExt <- caTools::runmean(as.vector(coverage(extNeg)$chr1[coords]),20)

pdf("Cross_Coverage_ReadExtension.pdf")

plot(smoothNegCovExt,col="red",type="l",

ylab="Smoothed Read Depth 20bp Window",

http://bioconductor.org/packages/release/bioc/html/chipseq.html

Working with ChIP-Seq Data in R/Bioconductor 5

xlab="bp from range start")

lines(smoothPosCovExt, col="blue",type="l")

dev.off()

which.max(smoothNegCovExt) - which.max(smoothPosCovExt)

2.3 Dispersion of coverage and duplication

A hallmark of good ChIP data is the inequality of coverage that occurs when there is enrichment of
reads to certain portions of the genome (e.g. transcription factor binding sites). Two such metrics
that attempt to summarise the distribution of signal dpeths across the genome are the Standardised
Standard Deviation (SSD) and Gini scores of coverage. Functions to calculate these are provided in the
htSeqTools package.

Use Case: Calculate SSD and Gini scores for the aligned data using the ssdCoverage() and
giniCoverage() functions respectively.

ssdCoverage(alignGR)

giniCoverage(alignGR)

Calculate the same for other samples. How do these values compare between ChIP samples and input
samples?

htSeqTools also provides functions that allow examination of the number of duplicate reads in a dataset.
Using statistical modelling, htSeqTools also identifies signficantly over-duplicated reads (which are likely
to be artifacts) and filters them.

Use Case: Use the tabDuplReads() function to examine the duplication rates. Then use the
filterDuplReads() function to remove significantly over-duplicated regions.

numDups <- tabDuplReads(RangedData(alignGR))

numDups

dupFilt <- filterDuplReads(RangedData(alignGR))

tabDuplReads(dupFilt)

3 Working with peak data

3.1 Reading in peaksets

In this section, we will introduce working with the peaks called in ChIP-Seq data within R. We will
perform various steps for processing and visualising the data, as well as further downstream analyses
that allow for exploration of this data in biological contexts.

The peaks used in this practical were generated using the popular peak caller MACS. MACS attempts
to identify genomic windows which are enriched for sample reads when compared to the input as well

http://bioconductor.org/packages/release/bioc/html/htSeqTools.html
http://bioconductor.org/packages/release/bioc/html/htSeqTools.html
http://bioconductor.org/packages/release/bioc/html/htSeqTools.html

Working with ChIP-Seq Data in R/Bioconductor 6

as the global expected rate of reads in that window.

We will start by examining the BED files generated by MACS containing information about peaks called.

Use Case: Read in a MACS peak BED file using the standard R read.delim() function. Examine
the data contained within

macsBed <- read.delim(file.path(getwd(), dataDir, "TF_1_peaks.bed"),

sep="\t",header=F)
head(macsBed)

The resulting data frame is one where each row represents a peak. THe columns represent the chro-
mosome, start and end coordinates of the peak, peak name and MACS peak score.

We will now convert this into a GRanges object that will allow for ease of further data processing and
analysis. The chromosome, strand, start and end positions are all that is needed for a GRanges object;
all other information is stored in the elementMetadata slot. Since we have no strand information we
will set this to ’*’ to mark it as unknown.

Use Case: Convert the peak data into a GRanges object. Query the GRanges class to understand
the various parameters and accessor functions. Find out how many peaks there are in the file and the
widths of these peaks.

macsGR <- GRanges(seqnames=as.vector(macsBed[,1]),

IRanges(start=as.numeric(as.vector(macsBed[,2])),

end=as.numeric(as.vector(macsBed[,3]))),

strand=rep("*", nrow(macsBed)))

elementMetadata(macsGR) <- macsBed[,-c(1:3)]

colnames(elementMetadata(macsGR)) <- c("Peak_ID","Score")

macsGR

length(macsGR)

width(macsGR)

3.2 Overlapping, merging and filtering peaksets

For the sake of convinience we will use three pre-written functions (Bed2GRanges, MakeConsensusSet)
and GetAverageSignalOverRanges() that are provided in a (.R) file along with the raw data. This
file can be read in using the source() function.

Use Case: Read in the R script in the practical data directory using the source() function. Use
the (Bed2GRanges function to read in all the BED files in the directory. Find the number of peaks
overlapping between two peaksets.

source(file.path(getwd(), dataDir, "ChIPSeq_functions.R"))

peakFiles <- dir(file.path(getwd(),"/Data_For_ChIP_Practical/"),

pattern="*_peaks.bed",full.names=T)

peakFiles

Working with ChIP-Seq Data in R/Bioconductor 7

pfList <- lapply(peakFiles,Bed2GRanges)

names(pfList) <- gsub("_peaks.bed","",basename(peakFiles))

Peaks in file 1 which overlap peaks in file 2

pfList[[1]][pfList[[1]] %over% pfList[[2]]]

Peaks in file 2 which overlap peaks in file 1

pfList[[2]][pfList[[2]] %over% pfList[[1]]]

Peaks unique to file 2

pfList[[2]][!pfList[[2]] %over% pfList[[1]]]

A common task ChIP-seq analyses is to identify peaks which occur across multiple peaksets, for example,
across replicates of a group of samples. One approach is to construct a consensus set of peaks by
”reducing” all peaks to a common, non-overlapping set and then using this consensus set as the basis
for further analyses.

Use Case: Use the MakeConsensusSet() from the sourced R script that was read in to create a
consensus peak set by merging all the peaksets in the directory.

mergedPeaks <- MakeConsensusSet(pfList)

Peaks in file 1 which overlap peaks in consensus set

pfList[[1]][pfList[[1]] %over% mergedPeaks]

Peaks in file 2 which overlap peaks in consensus set

pfList[[2]][pfList[[2]] %over% mergedPeaks]

Peaks unique to file 2

pfList[[2]][!pfList[[2]] %over% mergedPeaks]

filter to only keep peaks in chr 1

mergedPeaks <- mergedPeaks[seqnames(mergedPeaks) %in% "chr1"]

seqlevels(mergedPeaks) <- "chr1"

Note: In this practical we are filtering the merged peaks for only those on chromosome 1 in order
to make the object compatible with the truncated BAM and bigWig files that only contain data for
chromosome 1

The object containing the merged peaks also contains information on the occurrence of peaks used to
construct the consensus set. There are columns representing each peak file comprised of 0s and 1s
representing whether a consensus peak occured in that sample (1) or not (0).

Use Case: Use the metadata in the consensus peakset object to create a Venn diagram representing
peak co-occurence across the different peaksets.

Extract co-occurence information from mergedPeaks object

occ <- vennCounts(as.data.frame(elementMetadata(mergedPeaks)))

occ

pdf("Peak_Overlap_VennDiagram.pdf")

Working with ChIP-Seq Data in R/Bioconductor 8

vennDiagram(occ)

dev.off()

Use Case: Use the metadata in the consensus peakset object to extract peaks that (a) occur in both
TFs but not in the CoTF peakset and (b) occur in all three peaksets. How many peaks are there in
each case? Do they match up with what we see in the Venn diagram?

peaksTFonly <- mergedPeaks[elementMetadata(mergedPeaks)$TF_1 ==1

& elementMetadata(mergedPeaks)$TF_2 ==1

& elementMetadata(mergedPeaks)$CoTF ==0]

peaksTFandCoTF <- mergedPeaks[elementMetadata(mergedPeaks)$TF_1 ==1

& elementMetadata(mergedPeaks)$TF_2 ==1

& elementMetadata(mergedPeaks)$CoTF ==1]

length(peaksTFonly)

length(peaksTFandCoTF)

3.3 Coverage and read counts for peaks

Having refined our regions of interest we can now visualise the coverage of reads at these locations.
We can extract average read coverage of a peakser from the bigwig files for these data using the
GetAverageSignalOverRanges() function that we sourced earlier.

Use Case: Use the GetAverageSignalOverRanges() function to extract average read coverage from
the bigWig files for TF1 and CoTF for the refined peaksets using an 1000BP window around the peak
centres. Plot these data to see if these coverages differ between the refined peaksets.

bwCoTF <- file.path(getwd(), dataDir, "CoTF.bw")

bwTF1 <- file.path(getwd(), dataDir, "/TF_1.bw")

bwTF2 <- file.path(getwd(), dataDir, "/TF_2.bw")

covCommon_TF1 <- GetAverageSignalOverRanges(bwTF1, peaksTFandCoTF, 1000)

covCommon_TF2 <- GetAverageSignalOverRanges(bwTF2, peaksTFandCoTF, 1000)

covCommon_CoTF <- GetAverageSignalOverRanges(bwCoTF, peaksTFandCoTF, 1000)

covTFOnly_TF1 <- GetAverageSignalOverRanges(bwTF1, peaksTFonly, 1000)

covTFOnly_TF2 <- GetAverageSignalOverRanges(bwTF1, peaksTFonly, 1000)

covTFOnly_CoTF <- GetAverageSignalOverRanges(bwCoTF, peaksTFonly, 1000)

yMax <- max(covCommon_TF1, covCommon_CoTF, covTFOnly_TF1, covTFOnly_CoTF)

pdf("PeakCoverage.pdf", width=10)

par(mfrow=c(1,2))

plot(c(-499:500), covCommon_TF1, col="red", ylim=c(0, yMax), type="l",

main="Common peaks", ylab="bigWig coverage",

xlab="Distance from peak centre")

lines(c(-499:500), covCommon_TF2, col="green")

Working with ChIP-Seq Data in R/Bioconductor 9

lines(c(-499:500), covCommon_CoTF, col="blue")

abline(v=0, lty=2)

legend("topright", fill=c("red", "green", "blue"), legend=c("TF1", "TF2", "CoTF"))

plot(c(-499:500), covTFOnly_TF1, col="red", ylim=c(0, yMax), type="l",

main="TF only peaks", ylab="bigWig coverage",

xlab="Distance from peak centre")

lines(c(-499:500), covTFOnly_TF2, col="green")

lines(c(-499:500), covTFOnly_CoTF, col="blue")

legend("topright", fill=c("red", "green", "blue"), legend=c("TF1", "TF2", "CoTF"))

abline(v=0, lty=2)

dev.off()

We can query BAM files in the context of defined regions, e.g. the consensus peakset. The summarizeOverlaps()
function allows us to calculate read counts for specified genomic regions.

Use Case: Use the summarizeOverlaps() function to find get read counts for the consensus peakset
using the BAM files. Add this count information to the metadata of the consensus peakset object. Do
the counts agree with the peak co-occurence information?

readCounts <- summarizeOverlaps(mergedPeaks, bfList)

head(assays(readCounts)$counts)

elementMetadata(mergedPeaks) <- cbind(as.data.frame(

elementMetadata(mergedPeaks)), assays(readCounts)$counts)

head(mergedPeaks)

3.4 Annotation and biological exploration of peaks

The ChIPpeakAnno package allows for investigation of peaks in a biological context. It provides
batch biological annotation of peaks and includes functions for various tasks such as retrieval of se-
quences around peaks, assessment of enrichment of Gene Ontology (GO) terms, finding the nearest
gene/exon/miRNA/custom feature, etc. In this section we will use some of these functions

Use Case: Load the ChIPpeakAnno package and use the annotatePeakInBatch to annotate a
peakset. Write out the annotated data into a file and examine it.

library(ChIPpeakAnno)

##convert GRanges to RangedData format

peakSetRD = as(peaksTFandCoTF, "RangedData")

Load gene locations for human genome hg19

data(TSS.human.GRCh37)

annotatedPeaks = annotatePeakInBatch(peakSetRD, AnnotationData = TSS.human.GRCh37)

write.table(as.data.frame(annotatedPeaks), file = "annotatedPeakList.xls",

sep = "\t", row.names = FALSE)

http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html

Working with ChIP-Seq Data in R/Bioconductor 10

Use Case: Use the information in the annotated peaks to the density distribution of distances of peaks
to nearest gene transcription start sites.

nearestTSSdist = annotatedPeaks$distancetoFeature[

!is.na(annotatedPeaks$distancetoFeature) &

annotatedPeaks$fromOverlappingOrNearest == "NearestStart"]

pdf("DistanceToNearestTSS.pdf")

plot(density(nearestTSSdist), xlab = "Distance To Nearest TSS")

dev.off()

Use Case: Use the annotatePeakInBatch to carry out GO term enrichment analysis on the annotated
peakset. For this the ChIPpeakAnno requires annotation contained in the org.Hs.eg.db package which
will need to be loaded. Extract GO Biological Process terms results and examine these. Which terms
appear to be most enriched?

library(org.Hs.eg.db)

goAnalysis = getEnrichedGO(annotatedPeaks, orgAnn = "org.Hs.eg.db", maxP =0:01,

multiAdj = TRUE, minGOterm = 10, multiAdjMethod = "BH")

names(goAnalysis)

bpResult <- goAnalysis$bp

bpResult <- bpResult[order(bpResult$pvalue, decreasing=F),]

Use Case: Get the coordinates of windows of 150BP around the centres of peaks in a peakset.
Use the getAllPeakSequence to retieve the genomic sequences at these coordinates. For this the
ChIPpeakAnno requires annotation contained in the BSgenome.Hsapiens.UCSC.hg19 package which
will need to be loaded. Write the sequences out in Fasta format.

library(BSgenome.Hsapiens.UCSC.hg19)

peakCentres <- resize(peaksTFandCoTF, fix="center", 150)

peakCentresRD = as(peakCentres,"RangedData")

peakSeq <- getAllPeakSequence(peakCentresRD, upstream=0, downstream=0,

genome = Hsapiens)

sequences <- peakSeq$sequence

names(sequences) <- paste(peakSeq$space, start(peakSeq), end(peakSeq), sep="_")

seqXstring <- DNAStringSet(sequences)

writeXStringSet(seqXstring,file="sequences.fasta",width=150)

Go to the Meme-ChIP suite website and upload the Fasta file to identify the motif of our co-occurring
TF within the peak set. http://meme.nbcr.net/meme/cgi-bin/meme-chip.cgi

http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/org.Hs.eg.db.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.Hsapiens.UCSC.hg19.html

	1 Introduction
	2 Working with aligned data
	2.1 Reading in data
	2.2 Coverage and fragment lengths
	2.3 Dispersion of coverage and duplication

	3 Working with peak data
	3.1 Reading in peaksets
	3.2 Overlapping, merging and filtering peaksets
	3.3 Coverage and read counts for peaks
	3.4 Annotation and biological exploration of peaks

