
CRUK cluster practical
sessions
(SLURM)

Part I – processes & scripts

login
Log in to the head node, clust1-headnode, using
ssh and your usual user name & password.

You’re ready to start.

SSH Secure Shell 3.2.9 (Build 283)
Copyright (c) 2000-2003 SSH Communications Security Corp - http://www.ssh.com/

This copy of SSH Secure Shell is a non-commercial version.
This version does not include PKI and PKCS #11 functionality.

Last login: Mon Sep 19 10:44:07 2016 from bp7r25j.cri.camres.org
[user@cluster ~]$

navigate
Find out where you are using pwd.

Make a directory (mkdir) and move into it
(cd)

[user@cluster ~]$ pwd
/home/user
[user@cluster ~]$ mkdir training
[user@cluster ~]$ cd training/
[user@cluster training]$

processes
You can see your current processes using ps.

You can see what else this computer is doing
using top

[user@cluster training]$ ps
PID TTY TIME CMD

14859 pts/22 00:00:00 bash
18511 pts/22 00:00:00 ps

[user@cluster training]$ top

top output
top uses the whole screen. Type ‘q’ to get your
screen back.

top - 16:26:38 up 58 days, 22:33, 36 users, load average: 0.12, 0.14,
0.12
Tasks: 618 total, 1 running, 617 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.1%us, 0.2%sy, 0.0%ni, 99.5%id, 0.2%wa, 0.0%hi, 0.0%si,
0.0%st
Mem: 16437908k total, 10473016k used, 5964892k free, 2611564k buffers
Swap: 16779852k total, 162896k used, 16616956k free, 2158536k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
975 root 0 -20 22712 3832 2196 S 1 0.0 28:44.67 lim
4686 root 15 0 0 0 0 S 0 0.0 3:11.36 nfsd
19175 user 15 0 11048 1592 864 R 0 0.0 0:00.14 top

1 root 15 0 10364 600 564 S 0 0.0 0:12.04 init

The ‘sleep’ command
The sleep command doesn’t do much – but
you can control how many seconds it does it
for, and it doesn’t use much CPU or I/O

[user@cluster training]$ sleep 10
[user@cluster training]$

Stop and suspend
If we get bored, change our mind, or think
something is wrong we can interrupt jobs.
To stop a job, type ‘^C’ at the command line (
that’s [Ctrl]+[C] together).

If you don’t want to stop the job, you can
suspend it. Type ‘^Z’ (that’s [Ctrl]+[Z]).
Type ‘fg’ to bring the job back to the
foreground.

[user@cluster training]$ sleep 100
[user@cluster training]$

[user@cluster training]$ sleep 100
[1]+ Stopped sleep 100
[user@cluster training]$ fg

backgrounding
When we have suspended a job (which will
never finish). To get it to carry on, we can put it
in the ‘background’ using bg

You can put a job in the background
deliberately using the ‘&’ character at the end of
the command.

[user@cluster training]$ sleep 100
[1]+ Stopped sleep 100
[user@cluster training]$ bg
[1]+ sleep 100 &
[user@cluster training]$ ps
PID TTY TIME CMD

14859 pts/22 00:00:00 bash
24799 pts/22 00:00:00 sleep
25377 pts/22 00:00:00 ps

[user@cluster training]$ sleep 100 &
[1] 787
[user@cluster training]$ ps
PID TTY TIME CMD
787 pts/22 00:00:00 sleep
804 pts/22 00:00:00 ps

14859 pts/22 00:00:00 bash

Killing processes
If you don’t want to wait for it to finish, or
think it is broken in some way, you can
terminate it using the kill command.

Kill has a variety of gentle options to allow the
process to exit gracefully. If these fail one –
signal -9, or –KILL will normally remove the
process.

[user@cluster training]$ sleep 100 &
[1] 787
[user@cluster training]$ ps
PID TTY TIME CMD
787 pts/22 00:00:00 sleep
804 pts/22 00:00:00 ps

14859 pts/22 00:00:00 bash
[user@cluster training]$ kill -KILL 787
[user@cluster training]$
[1]+ Killed sleep 100
[user@cluster training]$

A simple example
Sleep is a good example, but it doesn’t produce
any output. We want to wrap it up with
messages – in unix you use echo to do this.

The colon here allows us to put multiple
commands on a single line.

[user@cluster training]$ echo start; sleep 1; echo finish
start
finish
[user@cluster training]$

Creating a script
Cluster programming makes use of scripts, so
we’ll turn this list of commands into a script.

Use the nano text editor to enter the following
script:

You can run a script by executing bash
<scriptname> or by making it directly
executable with chmod. The ‘./’ is important –
the shell only looks for executables in certain
places – the ‘PATH’.

[user@cluster training]$ nano script.sh

[user@cluster training]$ chmod u+x script.sh
[user@cluster training]$./script.sh
start
finish

Running the script
Now we are ready to start running our script,
or sending it as a cluster job.

[user@cluster training]$./script.sh > script.out &
[1] 7594
[user@cluster training]$ ps
PID TTY TIME CMD
7594 pts/22 00:00:00 bash
7595 pts/22 00:00:00 sleep
7598 pts/22 00:00:00 ps
14859 pts/22 00:00:00 bash
[user@cluster training]$
[1]+ Done ./script.sh > script.out

Cluster practical
sessions

Part II – cluster job submission

Submitting a job
Now we know enough to run our script on the
cluster.

Simply submit the job using sbatch.

• the output file is written to a Lustre file
system directory

• Create directory with username if it doesn’t
exist – e.g. mkdir /scratcha/stlab/garret01

• /home is writeable from cluster nodes, but
won’t perform as well.

• All read and write operations from within
jobs running on nodes should use either
/scratchb or /scratcha directories.

[user@cluster training]$ sbatch –-time=10 --output=/scratcha/stlab/garret01/%N-%j.out script.sh
Submitted batch job 200875

SLURM time formats
Acceptable time formats include "minutes", "minutes:seconds",
"hours:minutes:seconds", "days-hours", "days-hours:minutes" and
"days-hours:minutes:seconds".

Look at running jobs
While the job is running, you can see it with
squeue.

Once it’s finished, you can see the output.

[user@cluster training]$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
200876 general script.s user R 0:02 1 clust1-node-3
200867 general bash sawle01 R 4:01:05 1 clust1-node-2
175393 general MB99.6.v eldrid01 R 9-00:28:46 1 clust1-node-30
175330 general vardict_ eldrid01 R 9-01:40:03 1 clust1-node-1

[user@cluster training]$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
200867 general bash sawle01 R 4:01:33 1 clust1-node-2
175393 general MB99.6.v eldrid01 R 9-00:29:14 1 clust1-node-30
175330 general vardict_ eldrid01 R 9-01:40:31 1 clust1-node-1

[user@cluster training]$ ls /scratcha/group/user/
clust1-node-3-200877.out

What happened?
The output went into the file as expected:

Other information is stored, and available via
sacct:

[user@cluster training]$ cat /scratcha/group/user/clust1-node-3-200877.out
start
finish

[user@cluster training]$ sacct -j 200877
JobID JobName Partition Account AllocCPUS State ExitCode

------------ ---------- ---------- ---------- ---------- ---------- --------
200877 script.sh general group 1 COMPLETED 0:0
200877.batch batch group 1 COMPLETED 0:0

[user@cluster training]$ sacct -j 200877 --format JobID,MaxRSS,State,AllocCPUS
JobID MaxRSS State AllocCPUS

------------ ---------- ---------- ----------
200877 COMPLETED 1
200877.batch 2012K COMPLETED 1

An alternative way to
submit
You can submit a job directly to SLURM with
srun. This still requires resources – it’s more
commonly used as part of an existing job.

You can also generate an interactive session:

sintr is a local implementation of a script
written by Pär Andersson (National
Supercomputer Centre, Sweden) which will
sort out X Forwarding, launch screen on a
node, and connect you to the session.

[user@cluster training]$ sintr
[user@clust1-node-3 training]$

[user@cluster training]$ srun --time=1-12:30:59 /usr/bin/bash script.sh
start
finish

Killing a job
Just as for processes, but using scancel

NOTE: Do not use skill it is NOT a SLURM
command!

[user@cluster training]$ sbatch --output=/scratcha/group/user/%N-%j.out script.sh
Submitted batch job 200889
[user@cluster training]$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
200889 general script.s user R 0:02 1 clust1-node-3
200867 general bash sawle01 R 4:28:21 1 clust1-node-2
175393 general MB99.6.v eldrid01 R 9-00:56:02 1 clust1-node-30
175330 general vardict_ eldrid01 R 9-02:07:19 1 clust1-node-1

[user@cluster training]$ scancel 200889
[user@cluster training]$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
200867 general bash sawle01 R 4:28:21 1 clust1-node-2
175393 general MB99.6.v eldrid01 R 9-00:56:02 1 clust1-node-30
175330 general vardict_ eldrid01 R 9-02:07:19 1 clust1-node-1

Killing isn’t bad…
The scheduler manages the shutdown and still
records details of the job.

[user@cluster training]$ sacct -j 200889
JobID JobName Partition Account AllocCPUS State ExitCode

------------ ---------- ---------- ---------- ---------- ---------- --------
200889 script.sh general group 1 CANCELLED+ 0:0
200889.batch batch group 1 CANCELLED 0:15

Basic parallelism
Now we’re ready to use the cluster at full power!

One way to do this is with a job array. You can create
one of these using the

--array=1-N syntax in sbatch

Or using the srun with the –n or –N parameters.

[user@cluster training]$ sbatch --time=10 --array=1-10 --output=/scratcha/group/user/%N-
%j.out script.sh
Submitted batch job 200900
[user@cluster training]$ ls /scratcha/group/user
clust1-node-10-200908.out clust1-node-12-200900.out clust1-node-4-200902.out
clust1-node-10-200904.out clust1-node-12-200906.out clust1-node-11-200909.out
clust1-node-3-200901.out clust1-node-5-200903.out clust1-node-7-200905.out
clust1-node-9-200907.out

[user@cluster training]$ srun --time=10 –n hostname
clust1-node-9.cri.camres.org
…
clust1-node-13.cri.camres.org
[user@cluster training]$
[user@cluster training]$ srun --time=10 –N 3 hostname
clust1-node-19.cri.camres.org
clust1-node-25.cri.camres.org
clust1-node-8.cri.camres.org
[user@cluster training]$

#!/bin/bash

for i in Matthew Luca Mohammed Lochlan Leighton Keegan Dawid Magnie Zygmunt Zen
do

srun --time=10 -e /<YOUR SCRATCH DIR/%j-names-list.err -o /<YOUR SCRATCH DIR/names-list.out grep -n $i
/scratchb/training/refdata/names-list.txt 2>&1 &
done

The final example maps specific names to
their file position in a reference file list.

The map is written to names-list.out

Fin

