
CRUK CI HPC cluster
introduction

(III of III)

Some advanced topics

Reference Genomes

• Path to reference data:
/scratchb/bioinformatics/reference_data/reference_genomes/

• Path to assembly:

…/organism/assembly/
• What we maintain:

– Genome sequence (fasta)
– Alignment indices: BWA, TopHat, Bowtie (1,2)
– Annotations:

• GTF format gene model
• RefFlat format gene model
• Signal artifact list (if available)

Working with Lustre

1. Revisit architecture

2. Stripes

3. Avoiding I/O Bottlenecks

4. Using System Cache

Lustre: Quick Review

Lustre is a massively parallel distributed file
system
- Deployed in 7 out of 10 most powerful

supercomputers
- POSIX compliant

Lustre design paradigm concepts
- Separation of file meta-data and storage

allocation
- Scalable data serving through parallel data

striping
- Aggregates network bandwidth
- Distributed operation

’scratch’ storage we (deliberately) don't back
it up

Lustre Architecture …

…and File Striping

File Striping of Large Files

Performance benefits

- Aggregates I/O bandwidth to single large file

- In general, more stripes improves
performance

- Small overhead associated with open/closing
striped files

(Striping allows file size to exceed single OST
size)

Many jobs reading single file
- For example blastdb and maq reference data

- /lustre/reference_data/genomes

Many jobs reading & writing multiple large files
- Requires benchmarking

Many jobs writing to single file
- High bandwidth but requires careful coding

(can be disastrous)

Set Stripe Information
Set per file or directory
Default is not to stripe
Only newly created files will be stripes
- Use cp (not mv) to migrate existing files

Where,
size = stripe size specified in k, m or g (0 default
1MB)
count = OST stripe count (0 defaults 4 OST
and -1 over all OSTs)
index = OST index of first stripe (-1 indicating
default)

clust1-headnode ~ $ lfs setstripe <file|dir> --size <stripe_size>
--count <count> --index <index>

Read Stripe Information

Inspect file and directory stripe information
with lfs getstripe

Clust1-headnode ~ $ lfs getstripe -d /scratchb/reference_data/genomes
stripe_count: 65535 stripe_size: 0 stripe_offset: 0

Clust1-headnode ~ $ lfs getstripe -d /scratchb/reference_data
stripe_count: 1 stripe_size: 1048576 stripe_offset: 0

Clust1-headnode ~ $ lfs getstripe /scratchb/reference_data/genomes/Zea_mays/zma.3.ebwt
lmm_stripe_count: 16
lmm_stripe_size: 1048576
lmm_stripe_offset: 11
obdidx objid objid group
11 623006 0x9819e 0
0 8504376 0x81c438 0
..
12 622252 0x97eac 0
8 607894 0x94696 0

Using System Cache

Disk access is slow (no escape from this!)
- Memory access measured in a few

nanoseconds
- Disc access measured in 10s of milliseconds

Linux uses free memory as cache
- Memory reclaimed as least used files

expunged

“Pre-warming” cache
- Can increase I/O performance

Clust1-headnode ~ $ cat largefile > /dev/null
Clust1-headnode ~ $ grep searchString largefile

Avoiding Cache misses

Say you want to compare 3 sequences against 3
large databases:

“Out of the box” example
- sequence 1 vs database 1 No cache: disk

read required
- sequence 1 vs database 2 Cache miss:

disk read required
- sequence 1 vs database 3 Cache miss:

disk read required
- sequence 2 vs database 1 No cache: data

expunged from cache
- sequence 2 vs database 2 Cache miss:

disk read required

Re-ordering to avoid cache misses

- sequence 1 vs database 1 No cache: disk
read required

- sequence 2 vs database 1 Cache hit: data
in cache

- sequence 3 vs database 1 Cache hit: data
in cache

- sequence 1 vs database 2 No cache: disk
read required

- sequence 2 vs database 2 Cache hit: data
in cache

Avoiding Bad
Performance
· Interactive use
- Statting files can be slow (common with

shared file systems)

- Avoid directly editing small files on lustre
(keep to /home)

- Turn off “color ls” (stat required for each
file/directory)

Random seeks
- Small random I/O extremely slow on lustre
- Avoid, as much as possible, running

databases on lustre
e.g. mysql, sqlite, Berkeley DB etc

Limit number of files in directory
- 10,000s files in single directory bad (avoid, if

possible)
- Use lfs setstripe to confine all files to single

OST – obviously for small files only!

Clust1-headnode ~ $ lfs setstripe --count 1 directory

Simple Parallel
(‘Embarassing’ or ‘Trivial’ in the computing
science literature)

Solving many similar and independent tasks
- Analysis split into tasks
- Task assigned to one cpu
- No inter-task communication
- More throughput by running more tasks
- Task runtime varies

90% of bioinformatics codes fall into this model

Shared Memory

Shared tasks and memory
- Tasks assigned to cpus or cores
- Inter-task communication via shared

memory
- Runtime decreases by adding more threads

Message Passing - local

Multiple processes communicate using O/S level
systems. Code must be specifically written to
exploit parallelism
- OpenMP/OpenMPI/etc

Message passing over
network

Single task split across many compute nodes
- inter-machine communication (IMC)
- through MPI/OpenMP libraries again

Hybrid models
Single task split across many compute nodes
- Mix SMP, local MP, network MP

Can be tricky to predict performance.

Your code may get quite complex…

Acknowledgements

Marc O’Brien
Jon Marshall

Jing Su
Mark Fernandes

