Data Manipulation and Visualisation: An R primer
Mark Dunning and Mike Smith

Contents

Introduction 3
The crukCIMisc package o . o o o e e 3
Getting help with R 0 0 o o o 4

Recommended references 4

Running R and RStudio 4
Installing R 0 o o o e 4
Installing RStudio L 4
About this document 4

Reading data into R 5
Specify a path to the file 5
What separator should be used? 6
Tab-delimited file e 7
Comma-separated file 8
Excel file e 9
Specifying a different separatoro 10
SPSS file . . . o 10
Further options for reading files Lo 11

Skipping lines L 11

Files with no header L 12
Reading a pre-determined number of lines 0oL 13

Invalid characters e 13

Ifall else fails... o e 16

Strings as factors L e 17
Data in multiple files L 18
Data from online sources 18
Using pre-built datasets 18

Data manipulation

Selecting columns from a data frame
By column number e e e e
By column name (Recommended) L oo
Row subsetting e
Subset rows by index Lo e

Logical indexing e e e e

ToInT0 . o

BTED o v e e e e e e e

Adding new columns / variables Lo
Re-ordering data frames L e
Transpose a matrix oL L e e e e
Text manipulation L e e e e
Finding the number of characters
Changing case e e
Splitting into parts L
Extracting substrings e e
Replacing parts of strings
Combining strings L e
Long versus wide format

Calculating summary statistics L e

apply, tapply, aggregate L L e

Writing data to a file

Plotting

A histogram L. e
A scatter plot L
Pie chart e
Abar plot e e
A boxplot . . . o e
Dotchart / stripchart e
Survival Curve oL e
Growth curve L e
Replicating GraphPad Prism plotsin R
Exporting a plot

21
21
21
23
24
24
24
26
27
28
28
28
31
31
31
31
32
32
33
33
34
34
35

35

Changing the plot appearance e e e 53

Titles and axis labels 53

Adding custom axeso e 56

Specifying Colours L e 62

Plotting characters and their values L 65

Adding lines, points to a plot 66

Adding a legend 73

Adding text to plots e 74

The par function 7

Adding extra space around a plot 77

Combining multiple plots L 79

Statistical Analysis 82

Appendix 82

Vectors e e 82

Matrices o e e e e e e 83

Data Frames o e e 84

Lists . . . o o 84

Subsetting e 84

Functions e e 86

Useful functions to know 86

R version details 86
Introduction

Document last updated : 2014-12-15 11:18:57

This document will guide you through the key concepts and techniques required to manipulate and process
data in R. It is intended to be a reference document that you can refer to when you need to perform a
particular task in R. We have also created an R package to accompany this manual and automate the creation
of several graphs.

The crukCIMisc package

We have created an R package crukCIMisc to accompany this manual. The source code is available on github
and can be installed in the following manner (you will need to install the devtools package as shown below)

install.packages("devtools")

library(devtools)

install_github(repo = "crukCIMisc", username = "markdunning")
library(crukCIMisc)

https://github.com/markdunning/crukCIMisc

Getting help with R

You are of course welcome to email us, mark.dunning@cruk.cam.ac.uk and mike.smith@cruk.cam.ac.uk, with
any questions about R and the contents of this manual. However, we encourage you to use the online support
forum (similar to the popular stackoverflow) that the Bioinformatics Core has installed. Go to;

http://bioinf-qa001/

If you get stuck on something in R, there is a good chance that someone else has experienced the same
problem before. Tracking such problems will allow us to build-up a useful resource of commonly-asked
questions, and solutions.

Recommended references

Much freely-available documentation about R is available from CRAN. In particular, the R reference card is
recommended.

There is no shortage of other R tutorials available online. Some that have provided particular inspiration in
the construction of this document are listed below:

e R cookbook
e Quick-R
e UC Riverside R & Bioconductor manual

Running R and RStudio

Our recommended way of using R is via the RStudio interface. Like R, this software is freely to download
and available on any operating system. You will need to download the latest versions of R and RStudio.
Installing R

Download links for R can be found on the CRAN page (Comprehensive R Archive Network). There are

separate downloads for Windows and Mac OSX. Unix, or advanced users will need to find the appropriate
link to their distribuion, or consider downloading the source code.

Installing RStudio

RStudio was created by a third-party company and available as a free download. You can find an installer for
your platform on the download page. Make sure that you are downloading the Desktop version of RStudio,
rather than the server version.

About this document

This document was written in RStudio using the markdown format. If you see a section like this, you can
copy-and-paste the text into RStudio and execute it.

print("Hello World")

Often the output from R will be displayed after the R command. You can compare this to the output that
you get from running the command yourself.

mailto:mark.dunning@cruk.cam.ac.uk
mailto:mike.smith@cruk.cam.ac.uk
http://stackoverflow.com/questions/tagged/r
http://bioinf-qa001/
http://cran.r-project.org/other-docs.html
http://cran.r-project.org/doc/contrib/Short-refcard.pdf
http://www.cookbook-r.com/
http://www.statmethods.net/
http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual
http://cran.r-project.org/
http://cran.r-project.org/bin/windows/base/R-3.1.1-win.exe
http://cran.r-project.org/bin/macosx/R-3.1.1-snowleopard.pkg
http://cran.r-project.org/src/base/R-3/R-3.1.1.tar.gz
http://www.rstudio.com/products/rstudio/download/

print ("Hello World")

[1] "Hello World"

Sometimes the graphics produced by R will be displayed too.

plot(runif(1:10))

O
O
0 |
© @)
O
O
S 9
- O
—
=
c <
2 o 7 ©
N
o
O o o
O
I I I I I
2 4 6 8 10

Index

Reading data into R

The first stage of doing an analysis in R is to import some raw data that is presented a spreadsheet-like
format. By which we mean data organised in rows and columns like we usually see in a spreadsheet program
such a Microsoft Excel.

Unfortunately, importing data can be the source of many errors and frustrations; sometimes halting an
analysis before it has even begun. Well-formatted data should be easy to read using a small selection of
functions, although the user will have to decide which function to use. The key first steps are to locate the
relevant raw data file on your hard drive and decide what format it is in. As a rule-of-thumb, tab-delimited
files have file extensions .txt or .tsv, whereas comma-separated have an extension .csv .

More information on reading files into R can be found online at the R data manual or an introduction to
data cleaning with R

Specify a path to the file

R needs to know where the file is located on your hard drive in order to read it. If the file is located within
your working directory then you can just specify the name of the file. You can find out the location of your
working directory using the getwd function.

http://cran.r-project.org/doc/manuals/R-data.html
http://cran.r-project.org/doc/contrib/de_Jonge+van_der_Loo-Introduction_to_data_cleaning_with_R.pdf
http://cran.r-project.org/doc/contrib/de_Jonge+van_der_Loo-Introduction_to_data_cleaning_with_R.pdf

getwd ()

You can also interrogate the contents of your working directory using the dir function

dir()

The dir function has a useful argument pattern which will list files that contain a particular string of text.
For instance, we can list all files of type .csv and .txt in the current working directory that could potentially
be read into R.

dir(pattern=".csv")
dir(pattern=".txt")

If the file you want to read is not in your working directory, then you will need to specify thepath to the file.
A useful function in this situation is file.choose, which will open a dialog box allowing you to navigate to
the file. The location can be stored as a variable.

myfile <- file.choose()

When specifying the file location manually, it has to giving within quote marks, as in the following example

myfile <- "PrimerExamples/Indepentent two-sample t-test_v2_long.txt"

We will now discuss various ways of loading tabular data into R. The examples should cover most file types
that you might encounter (e.g. csv, txt, tsv, xlsx files). If you have an example file that doesn’t seem to fit
any of these example, please let us know. Please note that R is not able to import GraphPad Prism files, as
this file format is proprietary. You will have to use a commercial version of Prism to export the data table
into a text-file.

Once a file has been read into R, we recommend that you check the dimensions and contents. Sometimes
R will read a file without error, but may not have been able to interpret the structure of the data correctly,
which will cause problems for further analysis.

What separator should be used?

count.fields("PrimerExamples/Indepentent two-sample t-test_v2_long.txt",sep="\t")

[1
[36

1]22222222222222222222222222222222222
] 222222

count.fields("PrimerExamples/Indepentent two-sample t-test_v2_long.txt",sep=",")

[1]
[36]

t11111111111111111111111111111111111
111111

Tab-delimited file

As a rule-of-thumb, tab-delimited files have file extensions .tzt or .tsv. If your file is tab-delimited and you
have specified the location using the previous section, you will be able to use the read.delim function. The
file.exists is a useful function for checking that the file location is correct; returning TRUE if so.

myfile <- "PrimerExamples/Indepentent two-sample t-test_v2_long.txt"
file.exists(myfile)

[1] TRUE

mydata <- read.delim(myfile)

Assuming that the function does not produce an error, you should now have a variable mydata in your R
workspace. This is data frame object, described in more detail in the appendix. At this point, it is highly
recommended that you check the contents of the variable. The View command should open a new tab in
RStudio.

View(mydata)
The dimensions and structure of the data can be further interrogated using the following useful functions.

dim(mydata)

[1] 40 2

str(mydata)

'data.frame': 40 obs. of 2 variables:
$ Weight: num 20.77 9.08 9.8 8.13 16.54 ...
$ Breed : Factor w/ 2 levels "A","B": 1111111111 ...

head (mydata)

Weight Breed

1 20.77 A
2 9.08 A
3 9.80 A
4 8.13 A
5 16.54 A
6 11.36 A

In this case, the object has 2 columns and 40 rows; as we would expect.

Now notice what happens if we read the file by (incorrectly) calling the read.csv function on a tab-delimited
file

myfile <- "PrimerExamples/Indepentent two-sample t-test_v2_long.txt"
mydata <- read.csv(myfile)
dim(mydata)

[1] 40 1

str(mydata)

'data.frame': 40 obs. of 1 variable:
$ Weight.Breed: Factor w/ 39 levels "10.24\tA","10.28\tB",..: 27 34 39 31 23 5 6 9 17 24 ...
head (mydata)

Weight.Breed

1 20.77\tA
#it 2 9.08\tA
3 9.8\tA
4 8.13\tA
5 16.54\tA
6 11.36\tA

R was able to read the file without error, but the dimensions of the resulting object are incorrect. In particular,
it has been unable to separate the columns because an incorrect s eparator was used (a , rather than a tab).

Comma-separated file

Files that have columns separated by commas can be read using the read.csv function. The file location
needs to be specified by either using the file.choose function as follows;

myfile <- file.choose()

Or by specifying the path to the file within quote marks. Once the file has been read, we check the dimensions
and general structure.

myfile <- "PrimerExamples/One-sample t-test.csv"
mydata <- read.csv(myfile)

dim(mydata)

[1] 12 2

str(mydata)

'data.frame': 12 obs. of 2 variables:

$ Month : Factor w/ 12 levels "April","August",..: 54819762 12 11 ...

$ Failure.rate: num 2.9 2.99 2.48 1.48 2.71 4.17 3.74 3.04 1.23 2.72 ...

head (mydata)

Month Failure.rate
1 January 2.90
2 February 2.99
3 March 2.48
4 April 1.48
5 May 2.71
6 June 4.17

Excel file

R is even able to read Excel spreadsheets. This requires an additional package to be installed; gdata. This
package is loaded as follows;

library(gdata)

gdata: read.xls support for 'XLS' (Excel 97-2004) files ENABLED.

##

gdata: read.xls support for 'XLSX' (Excel 2007+) files ENABLED.
#i#

Attaching package: 'gdata'

#it

The following object is masked from 'package:stats':
#i#

nobs

#i#

The following object is masked from 'package:utils':
#it

object.size

It is not uncommon for a package to print text to the screen upon loading. You should not mistake this text
for an error message.

However, if you do not have gdata installed you will get an error message in the following form.
Error in library(gdata) : there is no package called 'gdata'

If this error occurs, the package will need to be installed and then loaded

install.packages("gdata")
library(gdata)

Note that you will only need to install the package once for a particular R version. However, you will need to
load this library in every new R session when you require the functionality to read Excel files.

We can now call the read.x1ls function from gdata to create a data frame from your input file.

myfile <- "PrimerExamples//Indepentent two-sample t-test_v2_long.xlsx"

mydata <- read.xls(myfile)

dim(mydata)

[1] 40 2

head (mydata)

it Weight Breed
1 20.770000000000000

1
2 9.080000000000000
3 .800000000000001
4 8.130000000000001
5
6

©

5 16.539999999999999
6 11.359999999999999

-

Specifying a different separator

If your file is neither tab or comma separated, then read.csv and read.delim will not be able to read the
file correctly with their default arguments. In the following example, we try and use to read.csv on a file
with columns that are separated with a space (" ").

myfile <- "PrimerExamples/space-separated.csv"

mydata <- read.csv(myfile)
dim(mydata)

[1] 12 1

head (mydata)

Month.Failure.rate

1 January 2.9
2 February 2.99
3 March 2.48
4 April 1.48
5 May 2.71
6 June 4.17

We see that the dimensions of the data object are incorrect. Both read.csv and read.delim have the option
to specify a different separator.

mydata <- read.csv(myfile, sep=" ")
dim(mydata)

[1]1 12 2

head(mydata)

#Hi# Month Failure.rate
1 January 2.90
2 February 2.99
3 March 2.48
4 April 1.48
5 May 2.71
6 June 4.17
SPSS file

R is able to read data created by SPSS. This requires an additional package to be loaded; foreign.

library(foreign)

You only need to load the library once per R-session. We can now call the read.spss function from foreign
to create a data frame from your input file.

10

myfile <- "PrimerExamples/p004.sav"

mydata <- read.spss(myfile,to.data.frame = TRUE)
dim(mydata)

[1] 199 7

head (mydata)

CURRENTM PREVIQOUS FAT PROTEIN DAYS LACTATIO I79

1 45 45 5.5 8.9 21 5 0
2 86 86 4.4 4.1 25 4 0
3 50 50 6.5 4.0 25 7 0
4 42 42 7.4 4.1 25 2 0
5 61 61 3.8 3.8 33 2 0
6 93 93 4.2 3.0 45 3 0

The foreign package is also able to read files in SAS (read.export) and STATA (read.dta) formats, but
sadly not Graphpad Prism.

Further options for reading files

Sometimes we might be faced with ‘messy’ data that do not have a straightforward format of rows and
columns. read.csv and read.delim are in fact specialised versions of a generic read.table function. This
function has many options to allow finer-grain control over how files are read into R, as you will see from the
manual page.

7read.table

We now summarise the options that prove to be most useful

Skipping lines

By default, R will assume that your data table starts on the first line of the file and that the column headers
are found on the first line. However, sometimes the data table can be preceeded with several lines of header
information. The header may contain useful information for the user, such as the date the file was generated
and software versions etc, but is not relevant when we try and read the data table into R.

If we try and use the default settings of read.delim to read a tab-delimited file with arbitrary header
information, the following occurs. In this case, the file contains counts for a number of barcodes detected
on a particular lane of sequencing. Naturally, we might want to read these data into R and perform some
exploratory analysis and diagnostics.

myfile <- "PrimerExamples/file-with-header.txt"
mydata <- read.delim(myfile)
head (mydata)

X100000_D0O0000_0000_COOCXXXXX
1 =
2 Lane 1 (SLX-0000)

11

3 0 e

4 260621866 reads
5 22313252 8.56Y% lost
6 1 = threshold for match

You will notice that R has tried to interpret the header information as lines of the data table, and therfore
the data is not imported correctly.

Fortunately, both read.csv and read.delim have a skip argument so that we can start reading the data
table from a pre-determined position in the file. In this example we have to skip the first 11 lines of the file
in order to reach the table.

mydata <- read.delim(myfile, skip=11)

head (mydata)

Index Total Balance X X0 X.1 X1
1 CGAGGCTG,CTCTCTAT 11772135 99.37% 11405699 4.37% 366436 0.14Y
2 TAGGCATG,CTCTCTAT 9812302 82.82% 9515630 3.65% 296672 0.11%
3 CTCTCTAC,CTCTCTAT 8971207 75.72% 8715457 3.34%, 255750 0.09%
4 CAGAGAGG,CTCTCTAT 13059606 110.247% 12650308 4.85% 409298 0.15%
5 GCTACGCT,CTCTCTAT 10757117 90.80% 10277334 3.94%, 479783 0.18%
6 CGTACTAG,CTCTCTAT 14975852 126.41% 14462740 5.54% 513112 0.19%

In practice, you may have to try different values for the skip argument in order to obtain the correct result.
Use of the head and dim functions should help you determine when the data has been read correctly.

Files with no header

Conversely, sometimes files can be created without any column names. By default, R assumes that the first
row in the file contains column headings. This can have unexpected consequences when a file does not contain
column headings.

myfile <- "PrimerExamples/file-with-no-header.csv"

mydata <- read.csv(myfile)
head (mydata)

January X2.9

1 February 2.99
2 March 2.48
3 April 1.48
4 May 2.71
5 June 4.17
6 July 3.74
dim(mydata)

[1] 11 2
colnames (mydata)

[1] "January" "X2.9"

12

In this example, R took the first line of the file to be the column headings and so we have column names
January & X2.9. Moreover, the data frame produced has 11 rows rather than 12. The remedy is to set the
header argument to FALSE. Both read.csv and read.delim are able to recognise the header argument.

myfile <- "PrimerExamples/file-with-no-header.csv"
mydata <- read.csv(myfile,header=FALSE)

head (mydata)

Vi V2
1 January 2.90
2 February 2.99
3 March 2.48
4 April 1.48
5 May 2.71
6 June 4.17
dim(mydata)

[1] 12 2
colnames (mydata)

[1] llVlll HV2|I

You can modify the column names of the mydata object.

colnames (mydata) <- c("Month", "Value")

Reading a pre-determined number of lines

It is possible to read only a fixed number of rows by using the nrows argument. Useful if you just want to
see the first few lines in a file.

subset <- read.csv("PrimerExamples/One-sample t-test.csv",nrows=4)

subset

Month Failure.rate
1 January 2.90
2 February 2.99
3 March 2.48
4 April 1.48

Invalid characters

Consider the following file, which we are told has the expression levels of 20 genes. We use read.delim to
read the file (as it is tab-delimited)

13

myfile <- "PrimerExamples/DiffGenes.tsv"
mydata <- read.delim(myfile)

Warning: EOF within quoted string

head(mydata)

#it LpR2 X3.57945023380892
1 fs(L)h 3.138
2 CG6954 2.749
3 Psa 2.701
#it 4 zfh2 2.625
5 Furl 2.441
6 ct 2.380
dim(mydata)

[1] 11 2

However, the number of rows comes out as 11. We can use the tail function (analagous to head) to look at
the last few rows in the file.

tail(mydata)

##
#
#
##
##
10

11 oc\t2.14209962314577\npros\t2.088167569056585\nKr-h1\t-2.04473631749177\nCG5149\t-2.15211774831633
#i# X3.57945023380892

© 0 N O®

6 2.380
7 2.367
8 2.357
9 2.260
10 2.174
11 NA

Problems of this nature are usually due to an extraneous quotation mark " or > being found somewhere in
the file. We can tell read.delim to ignore quotation marks in the following way. Of course, we could have
editted the raw data to remove the quote mark, but this might not be practical for larger files.

mydata <- read.delim(myfile,quote = "")

We now look at a second example file, which upon first impressions loads without any problems.
myfile <- "PrimerExamples/DiffGenes2.tsv"

mydata <- read.delim("PrimerExamples/DiffGenes2.tsv",header=FALSE)
head (mydata)

14

Vi V2
1 Psa 3.85289908747006
#it 2 vnd 3.64569585507463
3 ct 3.20099018731361
4 fs(1)h 3.14893215463257
5 btd 3.12292776675935
6 zfh2 2.84206544957174
dim(mydata)

[1]1 27 2

A natural data exploration step would be to calculate the mean of the gene expression values, which are
stored in the second column. However, we cannot do this even if we tell R to ignore any NA values. We can
discover that the second has not been treated as numeric values by R.

mean (mydatal,2])

Warning: argument is not numeric or logical: returning NA

[1] NA

mean(mydatal,2],na.rm=TRUE)
Warning: argument is not numeric or logical: returning NA

[1] NA

summary (mydatal,2])

? -2.04041157013508 2.16058794530145 2.17521378431384
1 1 1 1
-2.18074007124187 2.22322147868055 2.28021875859062 2.3040098655437
1 1 1 1
-2.34805605180196 2.43003804114927 -2.44043700058667 2.51110827431386
1 1 1 1
2.54242322740185 2.54754537929952 2.56790148021494 2.60223270812433
#i# 1 1 1 1
-2.72564011017977 -2.72929046084956 2.84206544957174 -2.9554891237748
1 1 1 1
3.12292776675935 -3.14132775338133 3.14893215463257 3.20099018731361
1 1 1 1
3.64569585507463 3.85289908747006 -3.8881615792709

#it 1 1 1

str(mydata)

'data.frame': 27 obs. of 2 variables:

$ V1: Factor w/ 27 levels "Awd","brat","btd",..: 20 26 10 11 3 27 21 19 4 23 ...
$ V2: Factor w/ 27 levels "?","-2.04041157013508",..: 26 25 24 23 21 19 16 15 14 13 ...

15

The issue is that our collaborator has chosen to use a ? to denote a missing value in the second column.
This causes R to think that this column contains characters rather than numbers. A solution is to use the
na.strings argument to specify a particular value that is used to denote a missing value.

myfile <- "PrimerExamples/DiffGenes2.tsv"
mydata <- read.delim("PrimerExamples/DiffGenes2.tsv",header=FALSE,na.strings="7")

head (mydata)

Vi V2

1 Psa 3.853

2 vnd 3.646

3 ct 3.201

4 fs(1)h 3.149

5 btd 3.123

6 zfh2 2.842

str(mydata)

'data.frame': 27 obs. of 2 variables:
$ Vi: Factor w/ 27 levels "Awd",'"brat","btd",..: 20 26 10 11 3 27 21 19 4 23 ...

¢ V2: num 3.85 3.65 3.2 3.15 3.12 ...

summary (mydatal,2])

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
-3.890 -2.310 2.290 0.835 2.590 3.850 1

mean (mydatal,2] ,na.rm=TRUE)

[1] 0.8349

If all else fails. ..
The readLines function can be used. This is a low-level function for reading data into R and reads each line
in the file as avector, along with the characters used to separate the columns. For example, if we read a file

with a .txt extension.

temp <- readLines("PrimerExamples/Indepentent two-sample t-test_v2_long.txt")
head (temp)

[1] "Weight\tBreed" "20.77\tA" "9.08\tA" "9.8\tA"
[5] "8.13\tA" "16.54\tA"

The fact that a \t character can be seen in each item of the vector tells us that we should be using the
read.delim function. Likewise, with a .csv

16

temp <- readLines("PrimerExamples/One-sample t-test.csv")

head (temp)
[1] "Month,Failure rate" "January,2.9" "February,2.99"
[4] "March,2.48" "April,1.48" "May,2.71"

each item in the vector has a , character which is used to separate the data into two columns. We should
read this file using read.csv

If we have a file with header information, we can use readLines to identify the line on which the data table
begins, and hence what we should use as a skip argument.

temp <- readLines("PrimerExamples/file-with-header.txt")
temp[1:15]

[1] "100000_D0O0000_0000_COOCXXXXX"

[2] " "
[3] nn

[4] "Lane 1 (SLX-0000)"

[B] Mmoo i

##+ [6] "

[7] "260621866 reads"

[8] "22313252 8.56% lost"

[9] "1 = threshold for match"

[10] "4 = minimum distance between barcodes"

[11] "Expected:"

[12] "Index\tTotal\tBalance\t\tO\t\t1"

[13] "CGAGGCTG,CTCTCTAT\t11772135\t99.37%\t11405699\t4.37%\t366436\t0.14%"
[14] "TAGGCATG,CTCTCTAT\t9812302\t82.82%\t9515630\t3.65%\t296672\t0.11%"
[15] "CTCTCTAC,CTCTCTAT\t8971207\t75.72%\t8715457\t3.34%\t255750\t0.09%"

In this case, we can see the column headings for the data table start on line 12. Thus, we should read the file
with skip=11 in the function read.delim.

Strings as factors

R is primarily a statistics language so much of its functionality is geared-up to make things ameanable to
statistical analysis. For instance, it will prefer to work with Factors rather than characters. When a data
table is read into R, as stored as a data frame, the default behaviour is to store character vectors as factors.
This may not always be neccesary.

myfile <- "PrimerExamples/One-sample t-test.csv"
mydata <- read.csv(myfile)

str(mydata)
'data.frame': 12 obs. of 2 variables:
$ Month : Factor w/ 12 levels "April","August",..: 548197 6 2 12 11 ...

¢ Failure.rate: num 2.9 2.99 2.48 1.48 2.71 4.17 3.74 3.04 1.23 2.72 ...

We do not plan to take advantage of this behaviour and can easily work with the months in character form.
Therefore we can set the argument stringsAsFactors=FALSE

17

myfile <- "PrimerExamples/One-sample t-test.csv"
mydata <- read.csv(myfile,stringsAsFactors=FALSE)

str(mydata)
'data.frame': 12 obs. of 2 variables:
$ Month : chr "January" "February" "March" "April" .

¢ Failure.rate: num 2.9 2.99 2.48 1.48 2.71 4.17 3.74 3. 04 1 23 2.72 ...

Data in multiple files

If the dataset you want to import is spread over several data files, you will have to read each file individually
and combine the respective data frames into a single object.

Data from online sources

The repmis package (misellaneous tools for reproducible research) contains useful functions to retrieve online
data.

install.packages("repmis")

A useful resource for such data is the Github page of Vincent Arel-Bundock, which has csv version of example
datasets found in many R packages. We can download data from this page using the source_data function.
For example, if we browse the web page we can see there is an dataset containing Ovarian Cancer survival
data. We can copy the URL of the corresponding .csv file and paste into R.

library(repmis)

surv <- source_data("http://vincentarelbundock.github.io/Rdatasets/csv/survival/ovarian.csv")
head (surv)

Using pre-built datasets

R comes with the datasets package which contains many example datasets ready for exploration and analysis.
To see what datasets are available, along with brief descriptions, enter the following;

data()

If you see a dataset that might be interesting (e.g. the DNase dataset which measures the density of a protein
at various concentrations), it can be loaded into R in the following manner.

data(DNase)

head (DNase)

Run conc density
##t 1 1 0.048383 0.017
#it 2 1 0.04883 0.018
##t 3 1 0.19531 0.121
4 1 0.19531 0.124
5 1 0.39062 0.206
6 1 0.39062 0.215

18

http://vincentarelbundock.github.io/Rdatasets/datasets.html

Further details on the dataset can be found on its help page.

7?DNase

Moreover, example plots and code can be generated using the example function.

example (DNase)

##
##
##
##
##
##
##
##
##

DNase>

DNase>
DNase>

DNase>
DNase>
DNase+

0 2 4 6 8 10

require(stats); require(graphics)

Don't show:
options(show.nls.convergence=FALSE)

End Don't show

coplot(density ~ conc | Run, data = DNase,
show.given = FALSE, type = "b")

Given : Run

0 2 4 6 8 10
L1 1 1 | 1 L1 1 1 1 1 |

2.0

1.0

0.0
% B

o
/9 °/

density

2.0

1.0

0.0
|
@

#it
DNase>
DNase+

I
2 4 6 8 10

conc

coplot(density ~ log(conc) | Run, data = DNase,

show.given = FALSE, type = "b")

19

4 6 8 10

1.0 2.0

0.0

density

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Given : Run

-3 -1 0 1 2 -3 -1 0 1 2
o L1 1 1 1 1 L1 [
N o 8
,° / o/
. o (] /o
v /
o | o (] o
- o/ o/ o’
n 0/0’ o7 0/0/
o _Jo—©°° o—o0-° o—0~
o
o o
s/ / s/
(©) 8 ()
/ g/ °/
o/o °/ °/
o7 o/o’ 0’0/ _ozo/
o—20-° o—0©9" o—09°" o—2°
o
2 4
/° /° Ve
n 8 [¢) /o
7
e _] e o/ (o}
— / vz /
Lo L0 8
7] .0 .0 .o~ .o~
o lg—o-° o—20°° o—20° o—20-°
o T T T T 1 T 1
-3 -1 0 1 2 -3 -1 0
log(conc)

DNase> ## fit a representative run
DNase> fml <- nls(density ~ SSlogis(log(conc), Asym, xmid, scal),
DNase, subset = Run == 1)

DNase+ data

DNase> ## compare with a four-parameter logistic
DNase> fm2 <- nls(density ~ SSfpl(log(conc), A, B, xzmid, scal),
DNase, subset = Run == 1)

DNase+ data

DNase> summary(fm2)

Formula: density ~ SSfpl(log(conc), A, B,

Parameters:

Estimate Std. Error t value Pr(>|t])
A -0.0079 0.0172 -0.46 0.65
B 2.3772 0.1095 21.71 b5.4e-11 ***
xmid 1.5074 0.1021 14.77 4.6e-09 ***
scal 1.0626 0.0570 18.64 3.2e-10 ***
Signif. codes: O '#xx' 0.001 '*x' 0.01 'x' 0.05

Residual standard error: 0.0198 on 12 degrees of freedom

DNase> anova(fml, fm2)
Analysis of Variance Table

20

xmid, scal)

.1 0.1

1

1.0 2.0

0.0

##

Model 1: density ~ SSlogis(log(conc), Asym, xmid, scal)
Model 2: density ~ SSfpl(log(conc), A, B, xmid, scal)
Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 13 0.00479

2 12 0.00471 1 8.23e-05 0.21 0.66

Data manipulation

The term data manipulation is used here to describe the steps that occur after having read data into R and
prior to plotting and/or statistical analysis.

Selecting columns from a data frame

We will illustrate using the mtcars data, one of the in-built datasets in R. We can load the data using the
data function and query the dimensions and print the first few lines using dim and head.

Subsetting in R always uses the [row,column] notation.

By column number

data(mtcars)

head (mtcars)

mpg cyl disp hp drat wt qgsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 O 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 O 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 O 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 O 3 1
dim(mtcars)

[1] 32 11

Columns in the data frame can be retrived using a numeric index. The first column can be retrieved by
specifying the column as 1 in [row,column] notation. However, we if we want values for all observations
(rows) we can neglect to specify a value before the ,. e.g.

mtcars[,1]

[1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2
[15] 10.4 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4
[29] 15.8 19.7 15.0 21.4

The output is a vector and it’s length will be the same as the number of rows in the data frame. Note that
we have not altered the mtcars data frame in any way. It will still have the same number of columns.

21

dim(mtcars)

[1] 32 11

If we want to do some further calculations on the vector we have extracted, we need to assign it to a variable

myvector <- mtcars[,1]
length(myvector)

[1] 32

myvector

[1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2
[15] 10.4 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4
[29] 15.8 19.7 15.0 21.4

The notation is very similar to retrieve the second column

myvector <- mtcars[,2]
length(myvector)

[1] 32

myvector

[1] 6 6 4686844668888884444888844486284

If we want to retrieve the first and second columns at the same time, we can construct a vector, using the
¢ function, comprising the indices we want to retrive and use this in the [1 notation. The result is a data
frame itself.

mydf <- mtcars[,c(1,2)]

head (mydf)

mpg cyl
Mazda RX4 21.0 6
Mazda RX4 Wag 21.0 6
Datsun 710 22.8 4
Hornet 4 Drive 21.4 6
Hornet Sportabout 18.7 8
Valiant 18.1 6
dim(mydf)

[1] 32 2

We can also use the : shortcut to generate a sequence of consecutive integers

22

mydf <- mtcars[,c(1:3)]

head (mydf)

mpg cyl disp
Mazda RX4 21.0 6 160
Mazda RX4 Wag 21.0 6 160
Datsun 710 22.8 4 108
Hornet 4 Drive 21.4 6 258
Hornet Sportabout 18.7 8 360
Valiant 18.1 6 225
dim(mydf)

[1] 32 3

By column name (Recommended)

We can also extract data using the names of columns. This is the recommended approach, as you might not
be sure that the same variables will always be stored in the same column.

myvec <- mtcars[, "mpg"]
head (myvec)

[1] 21.0 21.0 22.8 21.4 18.7 18.1

The column names can be combined using the ¢ function

mydf <- mtcars[,c("mpg","cyl")]

head (mydf)

mpg cyl
Mazda RX4 21.0 6
Mazda RX4 Wag 21.0 6
Datsun 710 22.8 4
Hornet 4 Drive 21.4 6
Hornet Sportabout 18.7 8
Valiant 18.1 6

We can also access columns by name using the $ operator. By default, this will return all values in the
column. This approach can be used in conjunction with tab-completion; meaning that you start typing the
name of the column and press the TAB key. A list of possible column names will then appear.

myvec <- mtcars$mpg
myvec

[1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2
[15] 10.4 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4
[29] 15.8 19.7 15.0 21.4

23

Row subsetting
Subset rows by index

If we know the index of the row we want to retrieve, we can supply these indices in the [] notation. The get
the first row, we can do

mtcars([1,]

mpg cyl disp hp drat wt gsec vs am gear carb
Mazda RX4 21 6 160 110 3.9 2.62 16.46 0 1 4 4

Muliple rows can be specified at a time. For example using the : shortcut

mtcars[1:5,]

mpg cyl disp hp drat wt gsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 O 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0O O 3 2

Logical indexing

The term logical is used to describe values that are either TRUE or FALSE (sometimes called Boolean values
in other languages). We can combine logical values into a vector and use for subsetting. In particular, they
can be used to specify exactly which elements we extract from a vector. In this example, we create a vector
of length 10, and another logical vector of the same length. Using the logical vector within the square
brackets [1 will tell R to extract elements only when the corresponding value in the the logical vector is TRUE
myvec <- 1:10

myvec

[1] 1 2 3 4 5 6 7 8 910

logvec <- c(TRUE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE, TRUE)
logvec

[1] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

myvec [logvec]

[1] 1 2 10

In this case, logvec has TRUE values in positions 1,2,10. So these are the elements of myvec that can extracted
in myvec[logvec].

There are several arithmetic operations that perform comparisons and produce a logical vector as output.
The most common of these are >,<,==. Where == is used to test that two numerical values are the same.

24

If we wanted to restrict the data frame to rows where the mpg is less than 15, we would first create a vector
that will test all values of mpg to see if they are less than 15. Notice that the vector created is the same

length as the number of rows in the data frame (32).

myind <- mtcars$mpg < 15
myind

[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[12] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

[23] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

length(myind)

[1] 32

The logical vector, can now be used to subset the data frame. Only rows where myind has a value of TRUE

will be returned.

mtcars [myind,]

mpg cyl disp hp drat
Duster 360 14.3 8 360 245 3.21
Cadillac Fleetwood 10.4 8 472 205 2.93
Lincoln Continental 10.4 8 460 215 3.00
Chrysler Imperial 14.7 8 440 230 3.23
Camaro Z28 13.3 8 350 245 3.73

wt gsec vs am gear carb

3.570 15.84
5.250 17.98
5.424 17.82
5.345 17.42
3.840 15.41

0

O O O O

0

O O O O

3

W w ww

I NN NS

Note that in the previous command we have created a subset of the data frame and not

object; the number of rows is still 32

subset <- mtcars[myind,]

subset

#i# mpg cyl disp hp drat
Duster 360 14.3 8 360 245 3.21
Cadillac Fleetwood 10.4 8 472 205 2.93
Lincoln Continental 10.4 8 460 215 3.00
Chrysler Imperial 14.7 8 440 230 3.23
Camaro Z28 13.3 8 350 245 3.73
dim(subset)

[1] 5 11

dim(mtcars)

[1] 32 11

wt gsec vs am gear carb

3.570 15.84
5.250 17.98
5.424 17.82
5.345 17.42
3.840 15.41

0

O O O O

o

O O O O

3

W w ww

I QTN NS

altered the original

Logical vectors can be used in combination, provided they are the same length. Now if we wanted all cars

with mpg < 15 and drat > 3 we can combine the two conditions using the & operation.

25

myind <- mtcars$mpg < 15 & mtcars$drat > 3
myind

[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[12] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[23] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

length(myind)

[1] 32

Notice that myind is still length 32.

subset <- mtcars[myind,]

subset

mpg cyl disp hp drat wt qgsec vs am gear carb
Duster 360 14.3 8 360 245 3.21 3.570 156.84 0 O 3 4
Chrysler Imperial 14.7 8 440 230 3.23 5.345 17.42 0 O 3 4
Camaro 728 13.3 8 350 245 3.73 3.840 15.41 0 O 3 4

Other ways of combining logical vectors include | (or) and ! (negation).

%in%

A common task in exploratory data analysis is to ask whether a specific value or values exists in a larger R
object. For example you may want to know whether a specific gene name appears in a long list of names
you’ve just read in. To achieve this we can use the %in% command. Note that we have to specify each gene

name within quotation marks "".

"BRCA1" %inJ, c("RAS", "MYC", "BRCA1", "TP53")

[1] TRUE

In the case above we were only interested in a single text query. The example below demonstrates both
that %in% is equally happy working with numeric values, and that a vector of queries can be used in a single
command. Here a vector of TRUE or FALSE values the same length as the number of queries will be returned.
This is far more efficient that trying each in turn.

c(1,5,11) %in% 1:10

#i# [1] TRUE TRUE FALSE

In our particular example, we could restrict the analysis to just rows that correspond to particular cars. The
car names appear in the rownames of the data frame.

rownames (mtcars)

26

[1] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710"

[4] "Hornet 4 Drive" "Hornet Sportabout" "Valiant"

[7] "Duster 360" "Merc 240D" "Merc 230"

[10] "Merc 280" "Merc 280C" "Merc 4508E"

[13] "Merc 450SL" "Merc 450SLC" "Cadillac Fleetwood"
[16] "Lincoln Continental" "Chrysler Imperial" "Fiat 128"

[19] "Honda Civic" "Toyota Corolla" "Toyota Corona"
[22] "Dodge Challenger" "AMC Javelin" "Camaro Z28"

[25] "Pontiac Firebird" "Fiat X1-9" "Porsche 914-2"
[28] "Lotus Europa" "Ford Pantera L" "Ferrari Dino"
[31] "Maserati Bora" "Volvo 142E"

myInd <- rownames(mtcars) %inj, c("Merc 230", "Merc 280")

myInd

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
[12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

mtcars [myInd,]

mpg cyl disp hp drat wt gsec vs am gear carb
Merc 230 22.8 4 140.8 95 3.92 3.156 22.9 1 O 4 2
Merc 280 19.2 6 167.6 123 3.92 3.44 18.3 1 O 4 4

myInd is a logical vector (i.e. either TRUE or FALSE) of length 32, where each denotes whether that particular
rownames is one of the supplied vector. This logical vector can then be used to subset the data frame.

match,

While the %in% command is useful for telling you whether a query appears somewhere, it doesn’t specify
where in the subject you will find it. However there are several ways to achieve just this, where perhaps the
most straightforward is which().

which(c("RAS", "TP53") == "BRCA1")

"MYC", "BRCA1",

[1] 3

However this approach falls down if one is interested in multiple queries.

which(c("RAS", "MYC", "BRCA1", "TP53") == c("BRCA1", "RAS"))

[1] 3

To avoid the confusion this could cause, it is better the employ the function match()

match(x = c("BRCA1", "MYC"), table = c("RAS", "MYC", "BRCA1", "TP53"))

[1] 3 2

27

If we just wanted to find which row corresponds to Merc 230 we can use the match function to see the index
of the rownames (mtcars) vector that corresponds to the string "Merc 230".

myInd <- match("Merc 230", rownames(mtcars))

myInd

[1]1 9

mtcars [myInd,]

mpg cyl disp hp drat wt gsec vs am gear carb

Merc 230 22.8 4 140.8 95 3.92 3.156 22.9 1 O 4 2

However, we have to remember that match will only return the index of the first occurence. If the string we
want to find occurs multiple times, then we may get unexpected results further on in the analysis. Also, the
text has to exactly match. Sometimes it is safer to use the grep function.

grep

grep will return all rownames that contain the string Merc somewhere in their name we can use the grep
function.

myInd <- grep("Merc", rownames(mtcars))
myInd

[1] 8 9 10 11 12 13 14

mtcars [myInd,]

mpg cyl disp hp drat wt gsec vs am gear carb
Merc 240D 24.4 4 146.7 62 3.69 3.19 20.0 1 O 4 2
Merc 230 22.8 4 140.8 95 3.92 3.156 22.9 1 O 4 2
Merc 280 19.2 6 167.6 123 3.92 3.44 18.3 1 O 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.44 18.9 1 O 4 4
Merc 4508E 16.4 8 275.8 180 3.07 4.07 17.4 0 O 3 3
Merc 4508L 17.3 8 275.8 180 3.07 3.73 17.6 0 O 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.78 18.0 0 O 3 3

We can perform much more complex queries (e.g. only searching for words starting with ‘Merc’, or finding
specific patterns of numbers and letter) using a tool called “Regular Expression” or “Regex”. However, this
beyond the scope of this document but a comprehensive introduction can be found at http://www.zytrax.
com/tech/web/regex.htm

Adding new columns / variables

Re-ordering data frames

Often we want to sort data based on one or more properties. R has several options for performing this type
of operation.

28

http://www.zytrax.com/tech/web/regex.htm
http://www.zytrax.com/tech/web/regex.htm
http://www.zytrax.com/tech/web/regex.htm
http://www.zytrax.com/tech/web/regex.htm

First we’ll look at the order () function. In its simplest form this function takes a list of values and returns
their ordering in ascending value. So in our example below the 15th entry is the lowest, followed by the 16th,
while the 20th entry is the highest.

If we actually want to put the data in this order, we need to use the subsetting approach.

order (mtcars[,"mpg"])

[1] 15 16 24 7 17 31 14 23 22 29 12 13 11 6 5102530 1 2 4 32 21
[24] 3 9 8 27 26 19 28 18 20

mtcars [order (mtcars[, "mpg"]),]

mpg cyl disp hp drat wt gsec vs am gear carb
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 O 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 O 3 4
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 O 3 4
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 O 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 O 3 4
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 O 3 3
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 O 3 2
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 O 3 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 O 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 O 3 3
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 O 4 4
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 O 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 O 3 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 O 3 2
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 16.560 0 1 5 6
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 O 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 O 3 1
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 O 3 1
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 O 4 2
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 O 4 2
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1

To list the entries in the opposite order we can specify the argument decreasing = TRUE.

mtcars [order (mtcars[, "mpg"],decreasing=TRUE),]

mpg cyl disp hp drat wt gsec vs am gear carb

29

Toyota Corolla 33.9 4 71.1 65 4.221.83519.90 1 1 4 1
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.652 1 1 4 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 O 4 2
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 O 4 2
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 O 3 2
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 O 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 O 3 1
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 O 3 3
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 O 3 3
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 O 3 2
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 O 3 3
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 O 3 2
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 O 3 4
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 O 3 4
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 O 3 4
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 O 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 O 3 4

Alternatively, R also includes the commnad sort (), which will perform the reordering automatically. It is
also useful to note that both order () and sort () will work on character data too where items will be sorted
alphabetically.

sort (mtcars[, "mpg"])

[1] 10.4 10.4 13.3 14.3 14.7 15.0 15.2 15.2 15.5 15.8 16.4 17.3 17.8 18.1
[15] 18.7 19.2 19.2 19.7 21.0 21.0 21.4 21.4 21.5 22.8 22.8 24.4 26.0 27.3
[29] 30.4 30.4 32.4 33.9

sort (rownames (mtcars))

[1] "AMC Javelin" "Cadillac Fleetwood" "Camaro Z28"

[4] "Chrysler Imperial" "Datsun 710" "Dodge Challenger"

[7] "Duster 360" "Ferrari Dino" "Fiat 128"

[10] "Fiat X1-9" "Ford Pantera L" "Honda Civic"

[13] "Hornet 4 Drive" "Hornet Sportabout" "Lincoln Continental"
[16] "Lotus Europa" "Maserati Bora" "Mazda RX4"

[19] "Mazda RX4 Wag" "Merc 230" "Merc 240D"

[22] "Merc 280" "Merc 280C" "Merc 4508E"

30

[25] "Merc 450SL" "Merc 450SLC" "Pontiac Firebird"
[28] "Porsche 914-2" "Toyota Corolla" "Toyota Corona"
[31] "Valiant" "Volvo 142E"

Transpose a matrix

mydata <- read.csv("PrimerExamples/Paired two-sample t-test.csv")
dim(mydata)

[1] 20 2

mydata.t <- t(mydata)
mydata.t

(.11 [,21 f[,31 [,41 [,8] [,61 [,71 [,8] [,9] [,10] [,11]
Ovarian 1201 1030 895.6 842.1 903.1 1312 833.5 1008 1466 967.8 812.7
Peritoneal 1156 1021 881.2 830.8 897.1 1263 823.1 951 1451 978.1 778.3
##t (,12] [,13] [,14]1 [,158] [,16] [,17] [,18] [,19] [,20]
Ovarian 884.1 1359 1280 942.4 884.3 930.1 1147 881.5 1315
Peritoneal 823.6 1336 1294 925.8 891.3 892.0 1133 847.8 1338

Text manipulation

Since we often begin an anaylsis be reading data from text files or spreadsheets, one frequently finds they
require tools to manipulate this text data in ways that make further analysis easier e.g. extracting componant
parts from complex sample IDs or manipulating date and time information.

Finding the number of characters

nchar (rownames (mtcars))

[1] 91310 14 17 710 9 8 8 9 10 10 11 18 19 17 8 11 14 13 16 11
[24] 10 16 9 13 12 14 12 13 10

Changing case

Sometimes it can be useful to standardise the case of any character information you're working with. It is
not uncommon to import data from different sources where alternative choices have been made regarding
capitalisation. For example it is not hard to imagine reading two tables relating to the same experiment
where in one the entries are labelled “SAMPLE N” and in the other “Sample N”. It is much easier to try and
match entries in these two tables if they are converted to the same format.

R includes the functions toupper () and tolower () that will perform this transformation for you, rather
than needing to edit the data directly.

exampleNames <- c("Sample 1", "Sample 2", "Sample 3", "Sample 4")
toupper (exampleNames)

31

[1] "SAMPLE 1" "SAMPLE 2" "SAMPLE 3" "SAMPLE 4"

tolower (exampleNames)

[1] "sample 1" "sample 2" "sample 3" "sample 4"

Splitting into parts

The function strsplit () allows you to break a string into smaller parts, based on a specified criteria. In the
example below we break our sample names where there is a space.

exampleNames <- c("Sample 1", "Sample 2", "Sample 3", "Sample 4")
Strsplit(x =] exampleNames, Spllt = ||)

[[11]

[1] "Sample" "1"
##

[[2]]

[1] "Sample" "2"
##

[[3]]

[1] "Sample" "3"
##

[[4]1]

[1] "Sample" "4"

The output from this is a list, where the ith entry is the result of breaking the ith string passed to the
function.

In cases like our example above, where we know every entry will be split into a consistent number of parts,
it’s often easier to transform this output into a matrix where each row represents an entry. To do this we
make use of the unlist () function, which transforms our list into a vector followed by the command to
create a matrix.

exampleNames <- c("Sample 1", "Sample 2", "Sample 3", "Sample 4")
namesList <- strsplit(x = exampleNames, split = " ")
matrix(unlist(namesList), ncol = 2, byrow = TRUE)

[,1] [,2]
[1 ’] "Sample" nyn
[2,] "Sample" "2"
[3,] "Sample" "3"
[4,] "Sample" "4"

Extracting substrings

If we only want to retain a portion of a string we can use the substring function. In addition to the strings
we want to process this takes two arguments: start and stop which are integers specifying the first and last
characters we want to retain. In the example below we retain the last 5 characters (note the space is treated
just like any other character).

32

exampleNames <- c("Sample 1", "Sample 2", "Sample 3", "Sample 4")
substr (exampleNames, start = 4, stop = 8)

[1] llple 1|l llple 2" Ilple 3" llple 4"

Replacing parts of strings

In addition to extracting portions of strings, you can replace them using the function sub(), much like one
might use find and replace in a text editor. In the following example we start with 3 sample names. We then
use the sub() command to replace “Person” with “Sample” and include a space before the number.

names <- c("Personl", "Person2", "Person3")
sub(pattern = "Person", replacement = "Sample ", x = names)

[1] "Sample 1" "Sample 2" "Sample 3"

The us a second substitution function called gsub (). This works in much the same way as sub(), but replaces
every instance of the pattern it finds, where as sub() only replaces the first occurance.

repeatExample <- c("Here Here")
sub(pattern = "Here", replacement = "Hear", x = repeatExample)

[1] "Hear Here"

gsub(pattern = "Here", replacement = "Hear", x = repeatExample)

[1] "Hear Hear"

Combining strings

To combine two strings we can use paste(). The result is a single string.

paste("Hello", "World")

[1] "Hello World"

We can combine more than two strings, as seen below. This example also highlights how shorter sets of
strings (in this case “Month” and “is”) will be reused as many times as necessary.

paste("Month", 1:12, "is", month.name)

[1] "Month 1 is January" "Month 2 is February" "Month 3 is March"
[4] "Month 4 is April" "Month 5 is May" "Month 6 is June"
[7] "Month 7 is July" "Month 8 is August" "Month 9 is September"

[10] "Month 10 is October" "Month 11 is November" "Month 12 is December"

The default behaviour of paste() is to place spaces between the string. If we want to alter this we need to
specify the sep argument. Here we combine the months of the year with the number of characters in each
word.

[1] "January:7" "February:8" "March:5" "April:5" "May:3"
[6] "June:4" "July:4" "August:6" "September:9" "October:7"
[11] "November:8" "December:8"

33

Long versus wide format

Calculating summary statistics

mydata <- matrix(runif(1000),ncol=5)

summary (mydata)

Vi

Min. :0.0135
1st Qu.:0.2807
Median :0.4754
Mean :0.5073
3rd Qu.:0.7580
Max. :0.9928
#t V5

Min. :0.0007
1st Qu.:0.2606
Median :0.5326
Mean :0.5162
3rd Qu.:0.7433
Max. :0.9998
colMeans (mydata)

[1] 0.5073 0.5304 0.

rowMeans (mydata)

#i# [1] 0.6352 0O
[11] 0.6993 0
[21] 0.5630 O
[31] 0.5743 0
[41] 0.4864 0
[51] 0.6056 0
[61] 0.4532 0
[71] 0.6246 0
[81] 0.5824 0
[91] 0.4339 0
[101] 0.5717 O
[111] 0.4344 0
[121] 0.5914 0
[131] 0.3755 0
[141] 0.6084 0
[151] 0.3577 0
[161] 0.3778 0
[171] 0.5799 O
[181] 0.7745 0
[191] 0.6720 O

O O O O oo

V2

Min.
1st Qu.:

Median

Mean
3rd Qu.:

Max.
4798 0.
L4974 0.5621
.6260 0.3455
.3686 0.5532
.3545 0.3240
.5183 0.6420
.4692 0.5891
.5350 0.3714
.6341 0.5579
.5725 0.4554
L4720 0.5372
.4927 0.5273
.3999 0.5220
.5933 0.6659
L4177 0.5041
.2844 0.5298
.5588 0.3789
.5028 0.5077
.5764 0.4956
L4743 0.3243
.2741 0.4308

.0202
.2802
.5298
.5304
.7821
.9976

4996 0.

O OO OO OO OOOOOO0OOOOOOoOOoOOo

.55564
.35689
.4896
.4430
.6670
.6203
.6608
.5066
.6412
.6112
.4382
.3655
.5671
.5387
.4795
.4624
.4403
.5236
.5893
.5304

5

O O OO OO ODODODIODODODODOOOOOOOOoOOo

Min.

1st Qu.:
Median :

Mean

3rd Qu.:

Max.

162

.3327
.6534
.6699
.5858
.6290
.1928
.6547
.4228
.3704
.5097
.4618
.1925
.4801
.3586
.2847
. 7408
.5150
.2856
.6405
.2849

V3

O OO O OO OO0 ODOOOOOOOOOoOOo

34

O O O O O O

.4685
.6222
.5674
.6559
L4114
.4540
.8046
.4545
.5139
.4469
.5804
.6342
.4437
.2401
.5295
.4281
.4273
.6098
.6636
.3393

.0016
.2703
.4552
.4798
L7224
.9996

O OO O OO ODODIODIODODODODOOOOOOOoOOo

V'

Min. :0
1st Qu.:0
Median :0
Mean :0
3rd Qu.:0
Max. :0
.3456 0.3695
.3338 0.6381
L4722 0.5031
.4780 0.4064
.5155 0.5841
.5445 0.6039
.4179 0.5655
.5371 0.6332
.6116 0.5275
.3281 0.3906
.7585 0.6795
.2628 0.4834
.6130 0.5333
.2727 0.5021
.5381 0.6182
.5882 0.6188
.3924 0.4024
.4512 0.5912
.3734 0.4005
.5108 0.6245

.0149
.2622
.4862
.4996
.7398
.9919

.4628
.3807
.5814
. 7894
.4546
.6367
.5935
L4773
.6463
.7108
.5051
.6883
.3799
.3284
.6613
.4946
.5427
.4053
.3460
.4635

[eleleolNolNeolNeolNolNolNeolNolNolNolNoNolNoNoNoNeoNeoNe]

O OO O OO OO0 IODODOOOOOOOOoOOo

.3971
.4602
.4096
. 7948
.4832
.4912
.3735
.6210
.2939
.8021
.4435
L6777
.5399
.6635
.4858
.5235
.4827
.3738
.4223
.5268

IQR(mydatal,1])

[1] 0.4773

sd(mydatal,1])

[1] 0.2812

apply, tapply, aggregate

Writing data to a file

Plotting

A plot can be created in R simply by calling the plot function with a valid R object.

There are many optional arguments can be altered to change the apperance of the plots e.g adding titles or
labels, altering the colour and shapes used to plot, or modifying the range of axes. Many of these options
are available across a multitude of plotting functions. We’ll initially demonstrate them using the histogram
function but most can be applied to whatever type of plot you are trying to generate.

A histogram

The hist function requires a numeric vector, which could be the result of some calculation you or have
performed or the column from a data frame. In this example, we will read an example file

mydata <- read.csv("PrimerExamples/One-sample t-test.csv")

mydata

Month Failure.rate
1 January 2.90
2 February 2.99
3 March 2.48
4 April 1.48
5 May 2.71
6 June 4.17
7 July 3.74
8 August 3.04
9 September 1.23
10 October 2.72
11 November 3.23
12 December 3.40

The data concern (fictional) failure rates for microarrays in Genomics. To visualise the distribution of the
failure rates, we could use a histogram using the hist function. We have to select the relevant column from
the data frame, in this case the second column.

35

hist(mydata$Failure.rate)

Histogram of mydata$Failure.rate

Frequency
2
|

I I I I I I I I
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

mydata$Failure.rate

Unfortunately, the default plot that R creates is not that pretty. As with all plotting functions, there is a
large amount of customisations that are possible. Details are on the help page for hist.

7hist

We can specify an alternative colour using the col argument.

hist(mydatal,2],col="steelblue")

36

Histogram of mydata[, 2]

Frequency
2
|

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
mydata], 2]
And add more informative labels and titles using main and xlab
hist(mydatal,2],col="steelblue" ,main="Microarray Failure Rates",xlab="Rate")
Microarray Failure Rates
<t —
m p—
>
O
c
Q
> AN —
o
o
LL
H p—
o —
I I I I I I I I
1.0 15 2.0 2.5 3.0 3.5 4.0 4.5

Rate

Technical modifications include displaying frequencies on the y-axis rather than counts.

37

hist(mydatal[,2],col="steelblue",main="Microarray Failure Rates",xlab="Rate",freq = FALSE)

Microarray Failure Rates

0.6

0.4

Density

0.2

0.0

I I I I I
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Rate

We can also specify the number of breaks

hist(mydatal,2],col="steelblue" ,main="Microarray Failure Rates",xlab="Rate",freq = FALSE,breaks = 12)

Microarray Failure Rates

0.6

Density
0.4
|

0.2

0.0

15 2.0 2.5 3.0 3.5 4.0

Rate

A scatter plot
The plot function is the generic function for plotting in R, and can produce different plots depending on the
input. A scatter plot can be generated by specifying a vector to go along the x-axis, and a vector for the y

axis. It is assumed that the first argument supplied is for the x axis, and the second for the y -axis.

mydata <- read.delim("PrimerExamples/Linear regression.txt")
mydata

Minutes Control Control.1l Control.2 Treated Treated.l Treated.2

1 1 34 29 28 31 29 44
2 2 38 49 53 61 NA 89
3 3 57 NA 55 78 99 7
4 4 65 65 50 93 111 109
5 5 76 91 84 NA 109 141
6 6 79 93 98 134 145 129
7 7 100 107 89 156 134 167
8 8 105 123 119 167 NA 180
9 9 121 143 134 178 192 175
10 10 135 156 NA 198 203 234

plot(mydatal,1],mydatal,2])

o
8 o
—
o o
=T °
g
© —
3 o ©
S
o
N o)
o _|
< o
o
| | | | I
2 4 6 8 10
mydata[, 1]

We can in fact just specify one vector, in which case the x axis is assumed to be the index of vector.

plot(mydatal,2])

39

o)
Q 4 o
—
o O
~ S %
<
@© |
S o ©
e
o)
] o)
o _]
< o)
o)
| | | | |
2 4 6 8 10
Index

By default, a open circle is drawn at each x and y combination. If we wish, we can draw a line through the
points by using the argument type="1"

plot(mydatal,2],type="1")

o
N_
—
o

QY 9._

5]

@© _

-

>
e
o _|
3

Index
Or choose to have both a line and the points by specifying type="b"

plot(mydatal,2],type="b")

40

mydatal, 2]

Later on, we will show how to add extra lines and points to this basic plot

100 120

40

Pie chart

A bar plot

mydata <- read.csv("PrimerExamples/One-sample t-test.csv")

Month Failure.rate

mydata

#i#

##H 1 January
2 February
3 March
4 April
5 May
6 June
7 July
8 August
9 September
10 October

##
##

We can add a name underneath each bar by changing the names.arg argument.

barplot(mydatal,2] ,names.arg=mydatal,1])

11 November
12 December

2.
.99
.48
.48
.71
.17
.74
.04
.23
.72
.23
.40

WWNEFE, WWHPNN~RDNDN

90

Index

41

10

January March May July September December

However, the default positioning of the labels is parallel to the axis and not all of the labels will fit in this
space. We can change the orientation of the labels using the las argument. 0:= always parallel to the axis
[default], 1: =always horizontal,2:=always perpendicular to the axis,3:=always vertical.

barplot(mydatal,2] ,names.arg=mydatal,1],las=2)

4 —

January
February
March
April

May

June

July
August
September
October
November
December

The colMeans function can be used to calculate the mean of each column in a data frame, and returns the
result as vector. Consequently, we can plot this vector as a barplot. Here we illustrate by first creating a
matrix of random numbers.

42

mydata <- matrix(rnorm(100),ncol=10)
means <- colMeans(mydata)
barplot (means)

i
S

I — O
i
o —
|
™
o -
|
©
o -
I
The A.B.M dataset describes cases of Acute Bacerial Meningitis.
abm <- read.csv("data//ABM.csv")
head (abm)
casenum year month age race sex dx priordx priorrx wbc
1 1 78 1 4.00000000 black female 1 0 0 6.500000
2 2 78 12 1.00000000 black male 1 0 0 3.700000
3 3 78 3 0.79999995 black male O 1 1 .
4 4 78 8 54.00000000 black male 6 2 0 7.500000
5 5
6 6o . . .
pmn bands compns daysrx offrx lptodc lpgap morelabs bloodgl gl pr
1 50 4 0 10 0 0 165 3.0 304
2 62 5 0 10 2 0 0 150 92.0
3 . . 6 10 1 1 . 183 36.0
4 73 7 6 10 0 52.0 43
5
6
#H# reds whites polys lymphs monos others gram culture cie bloodclt
1 440 4000 100 0 0 0 4 1 1 1
2 450 5490 97 3 0 0 5 1 . 1
3 0 4500 100 0 0 0 0 0 O .
4 27 0 0 6 6
5
6
Dbloodgl2 gl2 pr2 reds2 whites2 polys2 lymphs2 monos2 others2 sumbands
1 58 46 1 47 0 100 0 0 2.0000000
2 60 3.0990000
3 52 51 335 230 0 100 0 0 .
4 5.1089993
5

43

http://lib.stat.cmu.edu/S/Harrell/data/descriptions/abm.html

6 . .
subset abm

1 test 1
2 training 1
3 test .
4 training 1
5 test O

6 training O

dim(abm)

[1] 581 43

table (abm$sex)

##

. female male
81 221 279

barplot(table(abm$sex))

100 150 200 250

50

female male

We can notice from the table and plot that a third gender category has been included; .. In this dataset, the
. character is being used to represent a missing value. We can change this behaviour at the point of reading
the data by changing the na.strings argument to read.csv.

abm <- read.csv("data//ABM.csv",na.strings=".")
table(abm$sex)
#it

female male
221 279

44

barplot(table(abm$sex))

100 150 200 250

50

female male

table (abmsex,abmrace)

##

black white
female 133 86
male 153 124

barplot(table(abmsex,abmrace))

100 150 200 250

50

0
I

black white

barplot(table(abmsex,abmrace) ,beside=TRUE)

45

120
I

0O 20 40 60 80

black white

The plot can be improved by adding a legend and some colour.

barplot(table(abmsex,abmrace) ,beside=TRUE,col=c("red","blue"))
legend("topright", fill=c("red","blue"),legend=c("female","male"))

- Bl female
o B male
N p—

—

o _|

o0}

o _]

O

o _|

=

o _|

AN

o p—

black white

A boxplot

The boxplot is a convenient way of comparing the distributions of numeric data. If given a numeric matrix, or
data frame, it will construct a box from the quartiles of the data . The whiskers are plotted at 1.5 times the
inter-quartile range. Outliers are defined to be more than 1.5 times away from the box and plotted as circle.

mydata <- matrix(rnorm(100),ncol=10)
boxplot (mydata)

N — _E_ :
o | | T T -
© i
“~ _ : — : - '
| 1 ! T 1 : ! —_ :
cl\| B —_ _:_ o
I I I I I I I I I I
1 2 3 4 5 6 7 8 9 10
Outliers can be omitted from the plotting
boxplot (mydata,outline = FALSE)
N _E_ :
. : T T -
o - i
— | ! . — : —_ ! '
I 1 1 T 1 : 1 o :
CI\I | PR E— _:_ —_
I I I I I I I I I I
1 2 3 4 5 6 7 8 9 10

The title and axis labels can be modified in the usual manner.

boxplot (mydata,outline = FALSE,main="My boxplot", xlab="Columns")

47

My boxplot

_
1
- I
AN — ! ,
_ ! 1
1 | —_ .
1 ! 1
| 1
1
| | !
| . | o e — -
— — 1 1 | |
1 ! 1
! 1
\ 1
_ X
L
_
1
O !
1
| T
1
1 T
X 1 1 \ !
. —_ 1 \ !
T ! — 1 !
‘I_ 1 | T !
| | [T | | ! |
| B — ! 1 | ! P
| — 1 1 !
1 \ \ -
- [—_
9V} —_

Columns

A boxplot can also be generated if our data are in long rather than wide format. One such dataset is the
mtcars dataset, which is one of the built-in datasets in R.

One of the variables, cyl can only take certain values and is therefore a categorical variable. We can therefore
use it to split our observations into different groups. The mpg variable (miles-per-gallon) is continuous. By
treating the data in an appropriate way, we can get the distribution of mpg values for each distinct value of
cyl in the data. Such an aggregation is done by specifying a formula using the ~ operator; the expression
mtcars$mpg~mtcars$cyl does just this.

data(mtcars)

head(mtcars)

mpg cyl disp hp drat wt gsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 O 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0O O 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 O 3 1
str(mtcars)

'data.frame': 32 obs. of 11 variables:

$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...

$ cyl : num 66 46868446 ...

§ disp: num 160 160 108 258 360 ...

¢ hp : num 110 110 93 110 175 105 245 62 95 123 ...

¢ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
$ wt : num 2.62 2.88 2.32 3.21 3.44 ...

48

$ gsec: num 16.5 17 18.6 19.4 17 ...
$vs :num 0011010111
$am :num 1110000000 ...
$ gear: num 4 4 43333444 ...
$ carb: num 4411214224
length(mtcars$mpg)
[1] 32
length(mtcars$cyl)
[1] 32
table(mtcars$cyl)
##
#* 4 6 8
11 7 14
boxplot (mtcars$mpg~mtcars$cyl)
O_ 1
o™
o _|
N
o _|
N -
Lo | |
— | []
o _| o)
—
| | |
4 6 8

A boxplot can sometimes be misleading, as it does not provide any information about how many observations
are in each group. One thing we can do is adjust the widths of the bars to reflect the differing number of
observations.

mydata[1:7,1] <- NA
boxplot(mydata, varwidth = TRUE)

49

10

Dotchart / stripchart

mydata <- matrix(rnorm(100),ncol=10)

boxplot (mydata)

TRUE)

TRUE,vertical

stripchart(as.data.frame(mydata) ,add

m_m_m_-_Tu aaf:

10

TRUE)

dotchart(mydata,vertical

Survival Curve

Growth curve
Replicating GraphPad Prism plots in R
Exporting a plot

R is able to save graphics in a variety of formats. The easiest way of saving a plot is to use the Fzport tab in
the plot window in RStudio. You will then have the option of saving the plot as a .pdf or a variety of other
file formats such as .jpeg, .png, .tif.

N.B. .pdf plots can be futher altered in a graphics program such as Photoshop, whereas .jpeg, .png can be
more easily inserted into presentations. Journals often require high-resolution images in .t¢iff or .eps format.

The lines of code required to save a plot to a file are almost identical to producing the plot within RStudio;
the only difference is that you need to send the the plot to an alternative graphics device other than RStudio,
and close the device afterwards.

There are various functions can be used to create an alternative graphics device. These include pdf, jpeg,
png and have to be called before the code that creates the plot. You have to specify a file name that the plot
will be written to. However, the file does not have to exist prior to creating the plot.

In the following example, we will save a boxplot as a .png file. We will therefore use the png function to
write the plot to a file. If you run the code, you will notice that the plot is no longer displayed in RStudio.
This is because the plot has been created in an alternative graphics device. We therefore have to use the
dev.off function to close this device and allow us to open the file.

mydata <- read.csv("PrimerExamples/Paired two-sample t-test.csv")
file.exists("myboxplot.png")

[1] FALSE

list.files(pattern=".png")

[1] "mycoolplot.png"
png("myboxplot.png")

boxplot (mydata)
dev.off ()

pdf
2

You should notice that a file myboxplot.png has been created in your working directory. We can verify this
using the file.exists and list.files functions.

file.exists("myboxplot.png")

[1] TRUE

o1

list.files(pattern=".png")

[1] "myboxplot.png" "mycoolplot.png"

To create a .jpeg instead of a .png, we simply use jpeg instead of png.

jpeg("myboxplot. jpeg")
boxplot (mydata)
dev.off ()

pdf
2

You can specify the height and width of the plot by adjusting the height and width arguments. This can
be done in the same way for the jpeg and png functions. The values for height and width should be the
required number of pixels.

jpeg("myboxplot2. jpeg",width=800,height=500)
boxplot (mydata)
dev.off ()

pdf
2

.pdf documents as created in much the same way using the pdf function. However, you should note that the
dimensions of the plot are specified in inches rather than pixels.

pdf ("myboxplot.pdf",width=8,height=4)
boxplot (mydata)
dev.off ()

pdf
2

An important different between .jpeg, .png and .pdf is that .pdf documents can have multiple pages. In the
following example, we have multiple lines of code between the pdf and dev.off lines. Each plot is saved
onto a separate page in the pdf document.

pdf ("myplots.pdf")
hist(mydatal,1])
hist(mydatal,2])
boxplot (mydata)
dev.off ()

pdf
2

52

Changing the plot appearance
Titles and axis labels

It is always a good idea to use informative titles and axis labels on your plots. Unfortunately, the default
plots produced by R try and guess labels from the data, which may not be that useful. The plot function has
main, ylab and xlab arguments that can be used to specify these labels (which must be a character vector).
Moreover, other plotting functions such as boxplot, barplot and histogram also use the same argument
names.

mydata <- read.delim("PrimerExamples/Linear regression.txt")
plot(mydatal,1],mydatal,2] ,main="My Title", xlab="X axis", ylab="Y axis")

My Title
o)
Q4 o
—
o o}
S — o)
—
0
3
> 8] /o) o
o)
N o}
o _]
< o)
o)
[[[[[
2 4 6 8 10
X axis

randMat <- matrix(runif(100),ncol=10)
boxplot(randMat, main="Some Random numbers" ,xlab="Column",ylab="Value")

53

Some Random numbers

1.0

0.6

Value

0.4

0.2

Column

barplot(randMat[,1], main="Barplot of random values",ylab="Value",xlab="Column")

Barplot of random values

0.8

0.6

Value
0.4

0.2

Column

hist(randMat[,1] ,main="A random histogram", xlab="Value", ylab="Frequency of value")

A random histogram

o _
o\
() 0 _|
=) —
<
S
©
> o _|
c —
o
=)
o
L n
L o
o _|
o
[[[|
0.2 0.4 0.6 0.8
Value

Functions such as points, lines, text and abline cannot modify the title or axis labels. We can set the plot
title to be blank (the empty string "") at the time the plot is created, and add a title manually later-on using
the title function. The following also demonstrates that the colour and font of the title can be modified.

PlOt (randMat, main = "")

title(main = list("Pairwise plots of the random matrix", cex = 1.5,
col = "red", font = 3))

55

Pairwise plots of the random matrix

o)
o)
o] O
© _| © Oo
'cﬁh' o
g
<
2 o | ©
©
IV
S
o _|
o [[[[[[[
0.2 0.3 0.4 0.5 0.6 0.7 0.8

Adding custom axes

It is possible to create your own axes. First, you can to create a plot with the axes=FALSE argument. You

randMat[,1]

will see in the resulting plot that no axes are plotted

plot(randMat, axes=FALSE)

randMat[,2]

randMat[,1]

56

We can use the axis function to plot an axis at each side of the plot (1=below, 2=left, 3=above and 4=right).
Each time the axis function is called, a new axis is overlaid on the current plot.

plot(randMat, axes=FALSE)

axis(1)
©)
®)
O
o O
o
N
IS 0
= o o
C
g
o
I I I I I I I
0.2 0.3 0.4 0.5 0.6 0.7 0.8
randMat[,1]
plot(randMat, axes=FALSE)
axis(1)
axis(2)
©)
@ _
©) © O
© | o
N O
IS 0
= <
- ©)
g 3 o
g
N
o
o | o
o

I I I I I I I
0.2 0.3 0.4 0.5 0.6 0.7 0.8

randMat[,1]

LY

plot(randMat, axes=FALSE)
axis(1)

0.8

axis(2)
axis(3)
0.2 0.3 0.4 0.5 0.6 0.7
l | | | | | |
[o0]
o] O
(e}
© _| © oo
FI o
g
<
2 s °
©
(q\]
S
S _|
o [[[[[[|
0.2 0.3 0.4 0.5 0.6 0.7

plot(randMat, axes=FALSE)
axis(1)
axis(2)
axis(3)
axis(4)

randMat[,1]

58

0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8

O
[o0] [o0]
c] ° - o
o

© | ° % | «©
N © S
s o
= < <
2 s ° oS
<

N N

o o

o o L <

o | I I I I I | o

0.2 0.3 0.4 0.5 0.6 0.7 0.8
randMat[,1]

You don’t need to specify an axis for each side of the plot. The box function will enclose the remaining sides
without giving an axis.

plot(randMat, axes=FALSE)

axis(2)
box ()
(@)
[o0]
o (@]
© (@]

© _| © o}
~ o
il

(e}

= < o
2 o 7 ©
©
p -

N

o

o _| o

o

randMat[,1]

The font and colour of each axis can also be changed

59

plot(randMat, axes=FALSE)
axis(1,font=1,col="red")
axis(2,font=2,col="orange")
axis(3,font=3,col="yellow")
axis(4,font=4,col="blue")

0.2 0.3 0.4 0.5 0.6 0.7 0.8
O
0
o © B
(@]
© © oo |
N O
I o
>
T 3 © o
®
AN
X L
o o L
o | I I I I I |
0.2 0.3 0.4 0.5 0.6 0.7 0.8

randMat[,1]

We can change the position and labels of the tick marks

plot(randMat, axes=FALSE)
axis(1,font=1,col="red",at=seq(0,1,length.out = 4))
axis(2,font=2,col="orange",at=seq(0,1,length.out
axis(3,font=3,col="yellow",at=seq(0,1,length.out
axis(4,font=4,col="blue",at=seq(0.2,1,length.out

5),labels=letters[1:5])
6) ,labels=month.name[1:6])
3),labels=c("Low","Medium","High"))

60

0.8

0.6

0.4

0.2

0.0

February March April May

o
o
©
0 ° % 5
g - 3
g © o =
= 0 o
c
o
< . 3
o
-
CU O
| |
0.3333333 0.6666667
randMat[,1]

The tick labels can be rotated so that they are perpendicular to the axis

plot(randMat, axes=FALSE)

axis(1,font=1,col="red",at=seq(0,1,length.out = 4),las=2)
axis(2,font=2,col="orange",at=seq(0,1,length.out = 5),labels=letters[1:5],1las=2)
axis(3,font=3,col="yellow",at=seq(0,1,length.out = 6),labels=month.name[1:6])
axis(4,font=4,col="blue",at=seq(0.2,1,length.out = 3),labels=c("Low","Medium","High"),6las=2)

61

February March April May

e}
o
d
o)
o) o)
= o — Me
g C o
= o)
2 o)
©
b
— Lo\
o}
a
| |
o N~
™ O
™ (o]
2 S
o O
¥ randMat[,1] g
o o

Specifying Colours

The simplest way of specifying a colour in R is to use a pre-defined character string. There are 657 preset
values you can use, and their names can be printed to the screen using the colors function.

colors()

There is a colour chart available online that can be used to display the colors alongside the names.

You should make sure that the colour scheme that you choose is suitable for those with colour-
blindness. e.g. avoiding red / green colour schemes. One way of ensuring this is to use predfined pallettes in
the RColorBrewer package.

library(RColorBrewer)
display.brewer.all()

62

http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

YIOrRd [N N I

YIOrBr [0 Y D e
YIGnBuU [Y Y Y
YIGn [N D e
Reds [Y e D
RdPu [N D N
Purples [Y D S
PuRd [Iy e D
PuBuGn [Y Y Y
PuBuU [I O N
OrRd [Y e ——
Oranges [Y Y Y
Greys [Y D S
Greens [D S
GnBu [N
BuPu [Y Y Y
BuGn [Y D
Blues [N Y Y
Set3 I 1
Set2 e
Setl NG Y e [[
Pastel2
Pastell
Paired] [] I []] 1
Dark2 N e s e e
Accent ! [[|
Spectral NN [
RAYIGn I [N
RdYIBu [B
RdGy I [
RdBu [[Y
PuOr I [
PRGn I [N
PiYG I [N
BrBG I [N

You can pick one of these palette using the brewer.pal() function, where we specify first the number of
distinct colours we want and then the name of the palette taken from the list in the image above.

To use the colours in a figure, most plotting functions include the argument col to indicate the colours you
wish to use.

mypal <- brewer.pal(8, "Setl")
mydata <- read.csv("PrimerExamples/Paired two-sample t-test.csv")
plot(mydatal,1], col = mypal, pch = 19)

63

°
o
o _|
#
—
_ °
':|'O
s S7°
-lc—dl []
'c —
g
§_ ®
o ° o .
7 o ° °
°
S ° o
co [[[[
5 10 15 20
Index

If you wish to use Cancer Research Uk or Cambridge University branding, you can use the colours defined
in the crukCIMisc package. This package includes a function, CRUKcol which can be used to generate the
Cancer Research UK blue or pink colours.

library(crukCIMisc)
plot(mydatal[,1], col=CRUKcol("Blue"),pch=16)
points(mydatal,2],col=CRUKcol("Pink") ,pch=16)

a
o
o _|
I
— °
_ ° °
[
— O
—
o
._‘.N_.
g -
©
'O p—
>
88 -
S - °
— v
o) s e
] 8 []] [
"
o ~
S - °
oo [[[[
5 10 15 20
Index

boxplot (mydata, col=c(CRUKcol("Blue"),CRUKcol("Pink")))

64

1400

1200

1000

800
I

| |
Ovarian Peritoneal

Plotting characters and their values

You may have noticed that in some of the example scatter plots above not only the colour of the points has
been changing, but also the shape that is being drawn. The default is an open circle, but R has a variety of
alternative shapes, which are listed in the diagram below.

& @ [| ° \V/
5 10 15 20 25
X $ N () A
4 9 14 19 24
+ * ® . o

3 8 13 18 23
A X H A]

2 7 12 17 22
o v XX ° o}

1 6 11 16 21

We can specify a new plotting character using the pch argument. For example pch=16 uses filled rather than
open circles.

mydata <- read.csv("PrimerExamples/Paired two-sample t-test.csv")
plot(mydatal,1],pch=16)

65

[J
o
o _|
#
— [)
| (] [)
[)
- O
Z §1°
4(_—5' []
'O —
g
g - .
o ° o
[J
n L4 d ° ° °
S ’ . .
© | | | |
5 10 15 20
Index

Rather than being a single value, pch can be a vector of values that will be cycled through as each data point
is plotted.

plot(mydatal,1],pch=1:nrow(mydata))

$
o
o _]
=
— R
- \V4 - °
L)
E ‘
U —
g
S a *
=~ ®
n A
I + % 2} ° °
X
S _ . 0
™ | | | T
5 10 15 20

Index

Adding lines, points to a plot

Once a plot has been created, we have various options to modify it. Firstly we can add vertical and horzontal

lines to the plot using abline (read as ab line) with the v and h arguments respectively. Here we construct a
scatter plot as before, and

66

plot(mydatal,1],pch=1:nrow(mydata))

abline (h=1300)
abline (v=10)

L%
o
o _|
F
— R
°
—ry o
—
— 8 -1 ©
g - .
-O p—
3
o
8] A
- @
u A
N + 4 H ° °
S - %X
© | | |
5 10 15 20
Index
The appearance of the line can be modified, for example to be coloured differently.
plot(mydatal,1],pch=1:nrow(mydata))
abline (h=1000,col="steelblue")
abline(v=5,col="orange")
o
o _|
F
— R
] °
—ry o
—
o
— & 7 ©
g - :
-O p—
3
o
8 A
- @
u A
— + o @ ° °
X
S - %X
© | | | |
5 10 15 20
Index

67

A dotted line be drawn by specifying 1ty=2 (line type) and the width can be changed using the 1wd(line
width) argument.

plot(mydatal,1],pch=1:nrow(mydata))
abline(h=1000, col="steelblue", lty=2, lwd=5)
abline(v=5,col="orange",1ty=3,1wd=10)

$
o
o _|
=
—]
_| v - ¢
':O
s §7°
-‘a ’
'c —
g
S ®
n A
] + AN o ° °
X =
S _| X
8 | | | |
5 10 15 20
Index

The grid function can be used to draw horizontal and vertical lines at regular intervals in the background.

plot(mydatal,1],pch=1:nrow(mydata))

grid()
o &
o _]
=
— 2]
_ \V4 °
O
—ry o
= 1o
S -
g *
E\ _
o A
S *
e ®
R A
I + % =2} ° Y
X
S _ = o
o0 [[[[
5 10 15 20
Index

68

The colour of the grid lines can be changed in the usual way.

plot(mydatal,1],pch=1:nrow(mydata))
grid(col="steelblue")

mydatal, 1]

Another use for the abline function is to specify an intercept and coefficient for the line (the a and b in the
abline name). For instance, if we wanted the line corresponding to equality of two vectors, y = z, we can say.

1000 1200 1400

800

¢
............................ &
TR N T SRRSO L
: : B
o SO S N
.
......... B N
: ®
: : n A
............... —I_<>Ei..
..................... < B w
| | | |
5 10 15 20

Index

mydata <- read.csv("PrimerExamples/Paired two-sample t-test.csv")
plot(mydatal,1] ,mydatal,2])
abline(a=0,b=1)

mydatal, 2]

1000 1200 1400

800

I I I I I I I
800 900 1000 1100 1200 1300 1400

mydata], 1]

69

The points function can be used to add points to an existing plot. You need to specify vectors of z and y
positions at which the points will be plotted.

data <- read.delim("PrimerExamples/Linear regression.txt")
plot(datal,1],datal,2])
points(datal,1],datal,3])

@)
S © o
—
o © o
o — @)
— —
N o ©
I§l O
= |
S O
(@)
N o)
@)
o _|
#
0]
[[[[[
2 4 6 8 10
data], 1]
We can modify the colours in which points are plotted.
plot(datal,1],datal,2],col="steelblue")
points(datal,1],data[,3],col="orange")
@)
Q 4 o
—
o @]
o — @)
Lo | H
AN
g o
= |
S O
N o
o _|
< @)
@)
[[[[[
2 4 6 8 10
data], 1]

Or change the plotting characters

plot(datal,1],datal,2],col="steelblue",pch=16)
points(datal,1],data[,3],col="orange",pch=17)

(
Q- .
—
o {]
o - °
— —
N
g o |
g ® o °
] °
o _|
< °
[]
[[[[[
2 4 6 8 10
data], 1]

The arrows function can be used to connect pairs of points on an existing plot. We have to supply start ane
end x and y coordinates. In the example below, we draw and arrow from (2,1.5) to (10,4).

plot(datal,2])
arrows(2, 1.5, 10, 4)

o)
Q _ o
—
=) (@)
S — o)
I_|H
AN
T o
) —
© © o}
g o)
o)
N o}
o _]
< o)
o)
[[[[[
2 4 6 8 10
Index

71

Customisations of the arrow are possible and multiple arrows can be drawn by supplying the coordinates as
vectors. See the help page for more information.

7arrows

This function may not seem very useful initially, but it can be used as a means of drawing error bars on a
plot.

randMat <- matrix(rnorm(100) ,ncol=10)

means <- colMeans(randMat)
plot(means,ylim=c(-2,2))

err <- apply(randMat, 1, sd)

arrows(1:10, means-err,1:10,means+err,code=3,angle=90)

N p—
o [—
(0] 0]
2 ¢ -
8 o - () o
£ 0] 0}
0] 0]
- () —
I 1
(I\l |
[[[[[
2 4 6 8 10
Index

So far in this section, we have shown how to modify scatter plots using lines, points etc. However, the
same modifications can be applied to other types of plot too.

par (mfrow = c(1,2))

Bozplot

boxplot (randMat)

abline(h = 0,col="red")

points(1:10, y = seq(-3,3,length.out = 10),pch=16,col="steelblue")
text(1:10, y= seq(3,-3,length.out = 10),labels = LETTERS[1:10],col="orange")

Barplot

barplot(colMeans (randMat) ,ylim=c(-3,3))

abline(h = 0,col="red")

points(1:10, seq(-0.2, 0.6, length.out=10),col="steelblue",pch=16)

text(1:10, y= seq(0.6,-0.2,length.out = 10),labels = LETTERS[1:10],col="orange")

72

O

N N
8 : N

H_

N —

o D:L : I“-O'..
. - B C.
iE | © T oM 5 1

T - o T

[}

N I

I o T O0
._I_

o ™

Adding a legend

The legend function can be used to add a legend to an existing plot. In the following example, we generate
a random matrix and plot the second, third and fourth columns against the first. We use red circles, blue
squares and orange triangles respectively to represent these variables and we will use the legend to indicate
this mapping.

The names to be used in the legend are defined by the legend argument, while col and pch can be used to
define the relevant colours and plotting characters in the same way as they are in the plot itself. For fine
control over the position of the legend we can specify the x and y coordinates of where the legend will appear.
However this can be tedious if you change the size of the plot, so the strings topleft, topright, bottomleft
and bottomright are conveniant shortcuts for the most common locations.

randMat <- matrix(rnorm(100),ncol=10)

plot(randMat[,1] ,randMat[,2],ylim=c(-3,4),pch=16,col="red",,xlab="Columnl",,ylab="y")
points(randMat[,1] ,randMat[,3], pch=15,col="steelblue")

points(randMat[,1] ,randMat[,4], pch=17,col="chocolate3")

legend(x = "topleft", legend=c("Column 2", "Column 3","Column 4"), col = c("red", "steelblue", "chocola

73

¥ e Column 2
omn —| ® Column 3
A Column 4 ®
N []
o - =°® ¢ a N
> | [|
o | a* A
[) []
— u 1 4
r 4 1
o
~ A
N
(90 ® "
! [[[[[[[
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Columnl

A legend can be added to all types of plots; as shown here for a boxplot. Unlike the previous example, here
we’re not interested in the shape off the plotting character and only wanted to indicte the colour in the legend.
To achieve this we need to use £ill argument instead of the combination of pch & col we used before.

boxplot (randMat[,1:4],col=c("bisquel", "red", "steelblue",'"chocolate3"))
legend ("bottomright", legend=c("Column 1", "Column 2", "Column 3","Column 4"), fill = c("bisquel","red"

N —
- - : —
o _ 1
A — T
I \ : nil
_ B 'Column 2
N - @ Column3
B Column4
| | | |
1 2 3 4

Adding text to plots
A common task is to add labels to points in a plot. This can be achieved using the function text (), which

adds text to an existing plot. In the example below we first plot 10 points. These same values are used in
the text command to position the labels. The argument pos = 4 indicates we want to text to be placed to

74

the right of the specified coordinates; if we didn’t specify this the label would cover the points. The in this
example the labels are the first 10 letters of the alphabet, but the could equally be longer words such as the

names of samples.

plot(datal,1], datal,2], col="steelblue", pch=16)
text(x = datal,1], y = datal,2], pos = 4, labels=LETTERS[1:10])

oJ
S o |
-
H
8— e G ¢
—_
N
T
{g] ° E [) F
oD
] e C
o _|
< oA eB
[[[[[
2 4 6 8 10
data], 1]

Sometimes, we want to add annotations to the plot outside of the plotting window. This can be achieved
by using the mtext function. We use the paste function to construct our labels and have to specify the x
coordinates at which to put the text. The 1ine argument specifies how far from the border of the plot to

plot to write the text.

data(mtcars)
boxplot (mtcars$mpg~mtcars$cyl)
table(mtcars$cyl)

#i#
4 6 8
11 7 14

labs <- paste("n=", table(mtcars$cyl))
labs

[1] "p= 11" "p= 7" "p= 14"

mtext (side=3, at=1:3,text=labs,line=2,col="blue",font=3)

(0]

S
I
1
O_ 1
o™
o _|
9V}
1
—— —_—
o _|]
~ -
—— !
1
1
" | |
—] |]
o _| o
—
I I |
4 6 8

In the above example, we set the x coordinates to be 1,2,3 because we had three groups in the boxplot.
Unfortunately, the barplot function does not place the centers of the bars in such a uniform manner.

barplot(1:10)
box ()
mtext (side=1, at=1:10,text=LETTERS[1:10])

o
i

o_

A B C D E F G H I J

To get around this, we can assign the result of barplot to a variable. This variable then contains the
midpoints of each bar, which we can then use as input for the mtext function.

bp <- barplot(1:10)
bp

76

#it [,1]
[1,]1 0.7
[2,] 1.9
[3,] 3.1
[4,] 4.3
[5,] 5.5
[6,] 6.7
[7,1] 7.9
[8,] 9.1
[9,] 10.3
[10,] 11.5
box ()

mtext (side=1, at=bp,text=LETTERS[1:10])

o
—

A B C D E F G H I J

The par function
The par function can be used to alter various graphical parameters. These parameters will be applied to the

next plot to be created. We will now go through some of the most-popular uses of the par function. For a
comprehensive list of parameters that can be changed, see the help page for par; 7par.

Adding extra space around a plot
Taking the mtcars dataset as an example, we can sometimes create a plot where they is not adequate space
to fit all the labels. Here we make a barplot of the mpg variable and modify the axes. However, we see there

is not enough room to fit the labels

data(mtcars)
barplot (mtcars$mpg,names.arg = rownames (mtcars),las=2)

7

30 —]]

10

8 I
‘net 4 Drive
Sportabout
pa |
I
I
I

Pantera L
Dino

Valiant

Duster 360
Fiat 128

RX4 Wa

Merc 230

Merc 280
Merc 280C
lerc 450SE
lerc 450SL
'irc 450SLC
fonda Civic

azda RX4
atsun 71

Merc 240D
Fleetwood
ontinental
Fiat X1-9

sche 914-2

tus Euro

]

ler Imperial
'ota Corolla
ota Corona
Challenger
MC Javelin
amaro Z28
iac Firebird
‘errari

iserati Bora
\olvo 142E

v
A
D

We can use the par function before the plot is created to give us more room. The variable we need to change
is mar which should be a vector of length 4; referring to the amount of space 1) below 2) left 3) above 4) to

the right. The default setting is c(1,1,1,1) which gives one line of space at each edge of the plot. In this
example, we allow more lines below the plot.

data(mtcars)

par (mar=c(8,2,1,1))
barplot (mtcars$mpg,names.arg = rownames(mtcars),las=2)

78

15 R mm Al

H

o (6)] o

| | |
|
|
|
|
|
|
|
|
|
|
I

Cadillac Fleetwood []
|
|
|
|
|

S DO VEEONOO 1 TROOCBTECOTONGIO®
XMHzggogmmggmg SgNS=Cm=N:IIQ®C5£
PN EMIANNGOON OS50 2UNEgs o /8«
a N O 0805552300 Xd5000g
cl g8 s=NoOoONNOWOWS Q QOWLV®O = 5o .—
C < £>0 55 o S8 2SS E=E_0onES s
CX Y5 GLO8LT SR YEETSVOTNEIB WUEEES
REZTS 382282536 CS8ScQEolo¥atgd
ScOcSn 0= =02l ©9950=2ag8 Q252 0>
g0y S>>0 » IX>>gp<0OE Yolluwm
N +0 Sscs TPogY c 535 =
g = S < F35 a o W
) c O Q
T £ a)

Combining multiple plots

The mfrow variable can be set by the par function, which will change the layout of future plots. It requires a
vector of length 2 corresponding to how many rows and columns the plotting device is divided into. The
following arranges the plotting window into 3 rows and 1 column

data(mtcars)

par (mfrow=c(3,1))
hist (mtcars$wt)
hist (mtcars$mpg)
hist(mtcars$disp)

79

Histogram of mtcars$wt

>

o

g

g@

N R — I —

I | 1
2 3 4 5

mtcars$wt

Histogram of mtcars$mpg

Frequency
0 8
L

10 15 20 25 30 35

mtcars$mpg

Histogram of mtcars$disp

5

: T

| | |
100 200 300 400 500

Frequency
0

mtcars$disp

Similarly, we could have 1 row and 3 columns;

data(mtcars)

par (mfrow=c(1,3))
hist (mtcars$wt)
hist(mtcars$mpg)
hist(mtcars$disp)

80

Histogram of mtcars$wt Histogram of mtcars$mpg Histogram of mtcars$disp

I N ~ o —
© —
o _| © 7
-
0 - —
o - o —
3 3 R
c c c
() () ()
> > o — >
g g g
T ¥ T L o -
— Q- —
~ -
~ -
~ -
- 4 -
o - —‘ o - o -
I T T T T 1 I T T T 1
2 3 4 5 10 15 20 25 30 35 100 300 500
mtcars$wt mtcars$mpg mtcars$disp

We are not restricted to having the same type of plot, or even the same dataset plotted in each cell.

data(mtcars)

randMat <- matrix(rnorm(100) ,ncol=10)

par (mfrow=c(1,3))

hist(mtcars$wt,main="Histogram of wt")

barplot (mtcars$mpg, main="barplot of miles per gallon")
boxplot(randMat, main="boxplot of random matrix")

81

Histogram of wt barplot of miles per gallon boxplot of random matrix

- - -

— ™ °
8 o
0 -
~ -
| 0 _] T T
3\ . ':' |
| | !
! T L
© ! .
1 '
o _| - — . o,
N |
1 '
e '
1
1

Frequency
4
]
10 15
]]
0
]
| I
T }+
1
'._
CIrf---+
'._

~ T4 H WL
L1 1 !
Yo ! !
n - Yo ! !
Yoo + !
_‘ ! ' !
L 1
o] |
o - | 4
o
T T T T T T T 17T
2 3 4 5 1 5 7 9
mtcars$wt

Statistical Analysis

Appendix

Vectors

Vectors are the fundamental data type in R and are composed of an ordered group of single items of data.
There are several ways to construct a vector, but perhaps the simplest and most commonly used is c()
function. This may seem like an unintuative name (you’ll get used to some of R’s idosyncracies if you use
it long enough), but it stands for concatenate as what the function is actually doing is sticking together a
number of smaller objects.

numericVector <- c(1, 2, 3, 4)

When you create a variable with a single value, you are still creating a vector - it just has a length of one.
This is why we can describe vectors as the fundamental data type in R, there is nothing smaller to break
them down into.

shortVariable <- 1
shortVariable

[1] 1

82

shortVariable[1]

[1]1 1

Vectors don’t have to contain numbers, they work equally well for storing character data.

characterVector <- c("one", "two", "three", "four")

One important thing to note is the all the values in a vector must be of the same type. For instance you
cannot have numeric and character data in the same vector. However R won’t neccessarily report and error if
you try to do this, as the example below shows:

mixedVector <- c(1, 2, "three", "four")
mixedVector

[1] nqn non "three" llfourll

You can see in the output that all four values have quotation marks around them. This indicates that R has
automatically converted the numeric value to character strings. If you wanted to keep the distinct data types
you may wish to use a data frame, which we’ll discuss later.

Matrices

Sometimes it’s useful to store values in two dimensions (rows and columns) rather than in a linear fashion as
we can with vectors. For example if you have an experiment with several samples and multiple time points it
may make sense to store data in a format where the rows are samples and columns represent times.

In order to achieve this we can use a matrix object. The code below generates two small matrices, each
containing the number 1 to 16.

matrixl <- matrix(1:16, nrow = 4)

matrixil

[,11 [,21 [,3] [,4]
[1,] 1 5 9 13
[2,] 2 6 10 14
[3,] 3 7 11 15
#it [4,] 4 8 12 16

matrix2 <- matrix(1:16, nrow = 2)
matrix?2

(,11 [,21 [,3] [,4] [,81 [,6] [,7] [,8]
[1,] 1 3 5 7 9 11 13 15
[2,] 2 4 6 8§ 10 12 14 16

The nrow argument allows use to specify the dimensions of the matrix we create. Similarly we can specify
the argument byrow to change the order in which the values are placed in the matrix. The default value of
this agument is FALSE, specifying that the matrix is filled going down the columns. In the example below we
change this behaviour and fill and the values are placed going across columns instead.

83

matrix(1:16, nrow = 2, byrow = TRUE)

(.11 [,2] [,3]1 [,4] [,5] [,6]1 [,7]1 [,8]
[1,] 1 2 3 4 5 6 7 8
[2,] 9 10 11 12 13 14 15 16

As with vectors, matrices can only contain a single type of data; you can’t mix numbers and characters in
the same matrix.

Data Frames
If we want to store multiple types of data in a single object with the row and column structure you might
expect from a spreadsheet or printed table, we need to use a new object type: the data frame. In the example

below we’ll create a data frame using two of the vectors created in the previous section.

charNumFrame <- data.frame(numericVector, characterVector)
charNumFrame

numericVector characterVector

1 1 one
2 2 two
3 3 three
4 4 four
Lists

Although it’s easy to think of vectors as ‘lists’ of values, within R a list is a distinct type of object. Lists are
used when you want to group together disparate types of information. For example, one could store several
vectors of numbers, but they need not be the same length, something that a matrix or data frame could not
cope with. Alternatively, a list could contain four elements that are a vector, a matrix, a data frame and
another list respectively.

listl <- list(vecl = 1:2, vec2 = 3:5, vec3 = 6:9, vecd = 10:13)

list2 <- list(vec = 1:10, mat = matrix(1:10, nrow = 2), dat = data.frame(a = 1:5, b = 6:10), lis = list
Subsetting

Sometimes you only want to use a subset of the data stored in an object; perhaps you only want the first five

items from a long vector, or you’re only interested in the second column from a data frame. To extract a
portion of an object we need to use R subsetting functionality, which is denoted by square brackets [].

characterVector[2:3]

[1] "two" "three"

matrix1[3:4,]

[,11 [,2]1 [,31 [,4]
[1,] 3 7 11 15
[2,] 4 8 12 16

84

In the example above the first line extracts the 2nd and 3rd entries from a vector, while the second line
selects rows 3 and 4 from a matrix. If we wanted to obtain the same rows, but only for the first column we’d
need to specify that too:

matrix1[3:4, 1]

[1] 3 4

If you're really paying attention to the example above you’ll notice that when we only select one column the
format the data is printed to screen in changes. The entries are now next to each other rather than on top
of one another. This is because when you only select one column R automatically gives you back a vector
rather than a matrix (it assumes you don’t need the second dimension). This behaviour can sometimes be
useful and sometimes frustrating, but if you want to ensure it doesn’t happen you can use the drop = FALSE
argument seen below.

matrix1[3:4, 1, drop=FALSE]

[,1]
[1,] 3
[2,] 4

Extracting subsets from a list is slightly more subtle than for other object types. Where as before we used a
single set of square brackets [], lists make use of both this and a double set of brackets [[1].

When using a single set of brackets on a list, R will return another (probably shorter) list. In the code below
we ask for a list with only the first and third elements (the vector and data frame entries) from the example
made earlier.

list2[c(1,3)]
$vec

[11 1 2 3 4 5 6 7 8 9 10
##

$dat

a b

11 6

2 2 7

3 3 8

4 4 9

5 5 10

This makes sense if you're interested in getting a few entries but can be a little unintuative if you’re only
interested in a single element. Asking for a single entry in the manner shown above will still return a list. If
you wish to reference an element directly you use the double braket notation. This difference is demonstrated
in the example below, where we use the function class() to ask R what type of object we’ve got.

class(1ist1[1])

[1] "list"

85

class(1list1[[1]])

[1] "integer"

Functions
Useful functions to know

R version details
The version of R and the packages used in this document are given below.

sessionInfo()

R version 3.1.0 (2014-04-10)
Platform: x86_64-pc-linux-gnu (64-bit)

##

locale:

[1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en GB.UTF-8 LC_COLLATE=en_ GB.UTF-8

[5] LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8

[7] LC_PAPER=en_GB.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C

##

attached base packages:

[1] stats graphics grDevices utils datasets methods Dbase
##

other attached packages:

[1] crukCIMisc_0.2 RColorBrewer_1.0-5 foreign_0.8-61

[4] gdata_2.13.3

##

loaded via a namespace (and not attached):

[1] digest_0.6.4 drc_2.3-96 evaluate_0.5.5 formatR_0.10
[5] gtools_3.4.0 htmltools_0.2.4 knitr_1.6 plyr_1.8.1
[9] Rcpp_0.11.1 reshape2_1.4 rmarkdown_0.2.50 splines_3.1.0
[13] stringr 0.6.2 survival 2.37-7 tools_3.1.0 yaml_2.1.12

86

	Introduction
	The crukCIMisc package
	Getting help with R

	Recommended references
	Running R and RStudio
	Installing R
	Installing RStudio
	About this document

	Reading data into R
	Specify a path to the file
	What separator should be used?
	Tab-delimited file
	Comma-separated file
	Excel file
	Specifying a different separator
	SPSS file
	Further options for reading files
	Skipping lines
	Files with no header
	Reading a pre-determined number of lines
	Invalid characters
	If all else fails…

	Strings as factors
	Data in multiple files
	Data from online sources

	Using pre-built datasets
	Data manipulation
	Selecting columns from a data frame
	By column number
	By column name (Recommended)

	Row subsetting
	Subset rows by index
	Logical indexing
	%in%
	match,
	grep

	Adding new columns / variables
	Re-ordering data frames
	Transpose a matrix
	Text manipulation
	Finding the number of characters
	Changing case
	Splitting into parts
	Extracting substrings
	Replacing parts of strings
	Combining strings

	Long versus wide format
	Calculating summary statistics
	apply, tapply, aggregate

	Writing data to a file
	Plotting
	A histogram
	A scatter plot
	Pie chart
	A bar plot
	A boxplot
	Dotchart / stripchart
	Survival Curve
	Growth curve

	Replicating GraphPad Prism plots in R
	Exporting a plot
	Changing the plot appearance
	Titles and axis labels
	Adding custom axes
	Specifying Colours
	Plotting characters and their values
	Adding lines, points to a plot
	Adding a legend
	Adding text to plots

	The par function
	Adding extra space around a plot
	Combining multiple plots

	Statistical Analysis
	Appendix
	Vectors
	Matrices
	Data Frames
	Lists
	Subsetting
	Functions
	Useful functions to know
	R version details

