Data Manipulation and Visualisation: An R primer

Mark Dunning and Mike Smith

Contents

Introduction 3
The crukCIMisc package 3
Getting help with R 4
Recommended references 4
Running R and RStudio 4
Installing R 4
Installing RStudio 4
About this document 4
Reading data into \mathbf{R} 5
Specify a path to the file 5
What separator should be used? 6
Tab-delimited file 7
Comma-separated file 8
Excel file 9
Specifying a different separator 10
SPSS file 10
Further options for reading files 11
Skipping lines 11
Files with no header 12
Reading a pre-determined number of lines 13
Invalid characters 13
If all else fails. 16
Strings as factors 17
Data in multiple files 18
Data from online sources 18
Using pre-built datasets 18
Data manipulation 21
Selecting columns from a data frame 21
By column number 21
By column name (Recommended) 23
Row subsetting 24
Subset rows by index 24
Logical indexing 24
\%in\% 26
match, 27
grep 28
Adding new columns / variables 28
Re-ordering data frames 28
Transpose a matrix 31
Text manipulation 31
Finding the number of characters 31
Changing case 31
Splitting into parts 32
Extracting substrings 32
Replacing parts of strings 33
Combining strings 33
Long versus wide format 34
Calculating summary statistics 34
apply, tapply, aggregate 35
Writing data to a file 35
Plotting 35
A histogram 35
A scatter plot 39
Pie chart 41
A bar plot 41
A boxplot 46
Dotchart / stripchart 50
Survival Curve 51
Growth curve 51
Replicating GraphPad Prism plots in R 51
Exporting a plot 51
Changing the plot appearance 53
Titles and axis labels 53
Adding custom axes 56
Specifying Colours 62
Plotting characters and their values 65
Adding lines, points to a plot 66
Adding a legend 73
Adding text to plots 74
The par function 77
Adding extra space around a plot 77
Combining multiple plots 79
Statistical Analysis 82
Appendix 82
Vectors 82
Matrices 83
Data Frames 84
Lists 84
Subsetting 84
Functions 86
Useful functions to know 86
R version details 86

Introduction

Document last updated : 2014-12-15 11:18:57

This document will guide you through the key concepts and techniques required to manipulate and process data in R. It is intended to be a reference document that you can refer to when you need to perform a particular task in R . We have also created an R package to accompany this manual and automate the creation of several graphs.

The crukCIMisc package

We have created an R package crukCIMisc to accompany this manual. The source code is available on github and can be installed in the following manner (you will need to install the devtools package as shown below)

```
install.packages("devtools")
library(devtools)
install_github(repo = "crukCIMisc", username = "markdunning")
library(crukCIMisc)
```


Getting help with R

You are of course welcome to email us, mark.dunning@cruk.cam.ac.uk and mike.smith@cruk.cam.ac.uk, with any questions about R and the contents of this manual. However, we encourage you to use the online support forum (similar to the popular stackoverflow) that the Bioinformatics Core has installed. Go to;

http:/ /bioinf-qa001/

If you get stuck on something in R, there is a good chance that someone else has experienced the same problem before. Tracking such problems will allow us to build-up a useful resource of commonly-asked questions, and solutions.

Recommended references

Much freely-available documentation about R is available from CRAN. In particular, the R reference card is recommended.

There is no shortage of other R tutorials available online. Some that have provided particular inspiration in the construction of this document are listed below:

- R cookbook
- Quick-R
- UC Riverside R \& Bioconductor manual

Running R and RStudio

Our recommended way of using R is via the RStudio interface. Like R, this software is freely to download and available on any operating system. You will need to download the latest versions of R and RStudio.

Installing R

Download links for R can be found on the CRAN page (Comprehensive R Archive Network). There are separate downloads for Windows and Mac OSX. Unix, or advanced users will need to find the appropriate link to their distribuion, or consider downloading the source code.

Installing RStudio

RStudio was created by a third-party company and available as a free download. You can find an installer for your platform on the download page. Make sure that you are downloading the Desktop version of RStudio, rather than the server version.

About this document

This document was written in RStudio using the markdown format. If you see a section like this, you can copy-and-paste the text into RStudio and execute it.

```
print("Hello World")
```

Often the output from R will be displayed after the R command. You can compare this to the output that you get from running the command yourself.

```
print("Hello World")
## [1] "Hello World"
```

Sometimes the graphics produced by R will be displayed too.

```
plot(runif(1:10))
```


Reading data into \mathbf{R}

The first stage of doing an analysis in R is to import some raw data that is presented a spreadsheet-like format. By which we mean data organised in rows and columns like we usually see in a spreadsheet program such a Microsoft Excel.

Unfortunately, importing data can be the source of many errors and frustrations; sometimes halting an analysis before it has even begun. Well-formatted data should be easy to read using a small selection of functions, although the user will have to decide which function to use. The key first steps are to locate the relevant raw data file on your hard drive and decide what format it is in. As a rule-of-thumb, tab-delimited files have file extensions .txt or .tsv, whereas comma-separated have an extension .csv .

More information on reading files into R can be found online at the R data manual or an introduction to data cleaning with R

Specify a path to the file

R needs to know where the file is located on your hard drive in order to read it. If the file is located within your working directory then you can just specify the name of the file. You can find out the location of your working directory using the getwd function.

```
getwd()
```

You can also interrogate the contents of your working directory using the dir function

```
dir()
```

The dir function has a useful argument pattern which will list files that contain a particular string of text. For instance, we can list all files of type .csv and .txt in the current working directory that could potentially be read into R.

```
dir(pattern=".csv")
dir(pattern=".txt")
```

If the file you want to read is not in your working directory, then you will need to specify thepath to the file. A useful function in this situation is file.choose, which will open a dialog box allowing you to navigate to the file. The location can be stored as a variable.

```
myfile <- file.choose()
```

When specifying the file location manually, it has to giving within quote marks, as in the following example

```
myfile <- "PrimerExamples/Indepentent two-sample t-test_v2_long.txt"
```

We will now discuss various ways of loading tabular data into R. The examples should cover most file types that you might encounter (e.g. csv, txt, tsv, xlsx files). If you have an example file that doesn't seem to fit any of these example, please let us know. Please note that R is not able to import GraphPad Prism files, as this file format is proprietary. You will have to use a commercial version of Prism to export the data table into a text-file.

Once a file has been read into R, we recommend that you check the dimensions and contents. Sometimes R will read a file without error, but may not have been able to interpret the structure of the data correctly, which will cause problems for further analysis.

What separator should be used?

```
count.fields("PrimerExamples/Indepentent two-sample t-test_v2_long.txt",sep="\t")
## [1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [36] 2 2 2 2 2 2
count.fields("PrimerExamples/Indepentent two-sample t-test_v2_long.txt",sep=",")
```



```
## [36] 11 1 1 1 1 1 1 1
```


Tab-delimited file

As a rule-of-thumb, tab-delimited files have file extensions .txt or .tsv. If your file is tab-delimited and you have specified the location using the previous section, you will be able to use the read.delim function. The file.exists is a useful function for checking that the file location is correct; returning TRUE if so.

```
myfile <- "PrimerExamples/Indepentent two-sample t-test_v2_long.txt"
file.exists(myfile)
```

\#\# [1] TRUE
mydata <- read.delim(myfile)

Assuming that the function does not produce an error, you should now have a variable mydata in your R workspace. This is data frame object, described in more detail in the appendix. At this point, it is highly recommended that you check the contents of the variable. The View command should open a new tab in RStudio.

```
View(mydata)
```

The dimensions and structure of the data can be further interrogated using the following useful functions.

```
dim(mydata)
## [1] 40 2
str(mydata)
## 'data.frame': 40 obs. of 2 variables:
## $ Weight: num 20.77 9.08 9.8 8.13 16.54 ...
## $ Breed : Factor w/ 2 levels "A","B": 1 1 1 1 1 1 1 1 1 1 ...
head(mydata)
## Weight Breed
## 1 20.77 A
## 2 9.08 A
## 3 9.80 A
## 4 8.13 A
## 5 16.54 A
## 6 11.36 A
```

In this case, the object has 2 columns and 40 rows; as we would expect.
Now notice what happens if we read the file by (incorrectly) calling the read.csv function on a tab-delimited file

```
myfile <- "PrimerExamples/Indepentent two-sample t-test_v2_long.txt"
mydata <- read.csv(myfile)
dim(mydata)
```

\#\# [1] 40 1

```
str(mydata)
```

\#\# 'data.frame': 40 obs. of 1 variable:
\#\# \$ Weight.Breed: Factor w/ 39 levels "10.24\tA","10.28\tB",..: 27343931235691724 ...
head(mydata)
\#\# Weight.Breed
\#\# 1 20.77\tA
\#\# 2 9.08\tA
\#\# 3 9.8\tA
\#\# 4 8.13\tA
\#\# 5 16.54\tA
\#\# 6 11.36\tA
R was able to read the file without error, but the dimensions of the resulting object are incorrect. In particular, it has been unable to separate the columns because an incorrect s eparator was used (a , rather than a tab).

Comma-separated file

Files that have columns separated by commas can be read using the read.csv function. The file location needs to be specified by either using the file.choose function as follows;
myfile <- file.choose()

Or by specifying the path to the file within quote marks. Once the file has been read, we check the dimensions and general structure.

```
myfile <- "PrimerExamples/One-sample t-test.csv"
mydata <- read.csv(myfile)
dim(mydata)
## [1] 12 2
str(mydata)
## 'data.frame': 12 obs. of 2 variables:
## $ Month : Factor w/ 12 levels "April","August",..: 5 4 8 1 9 7 6 2 12 11 ...
## $ Failure.rate: num 2.9 2.99 2.48 1.48 2.71 4.17 3.74 3.04 1.23 2.72 ...
head(mydata)
\begin{tabular}{lrr} 
\#\# & Month Failure.rate \\
\#\# & J & January
\end{tabular} 2.90
```


Excel file

R is even able to read Excel spreadsheets. This requires an additional package to be installed; gdata. This package is loaded as follows;

```
library(gdata)
## gdata: read.xls support for 'XLS' (Excel 97-2004) files ENABLED.
##
## gdata: read.xls support for 'XLSX' (Excel 2007+) files ENABLED.
##
## Attaching package: 'gdata'
##
## The following object is masked from 'package:stats':
##
## nobs
##
## The following object is masked from 'package:utils':
##
## object.size
```

It is not uncommon for a package to print text to the screen upon loading. You should not mistake this text for an error message.
However, if you do not have gdata installed you will get an error message in the following form.

```
## Error in library(gdata) : there is no package called 'gdata'
```

If this error occurs, the package will need to be installed and then loaded

```
install.packages("gdata")
library(gdata)
```

Note that you will only need to install the package once for a particular R version. However, you will need to load this library in every new R session when you require the functionality to read Excel files.

We can now call the read.xls function from gdata to create a data frame from your input file.

```
myfile <- "PrimerExamples//Indepentent two-sample t-test_v2_long.xlsx"
mydata <- read.xls(myfile)
dim(mydata)
## [1] 40 2
head(mydata)
\begin{tabular}{lrrr} 
\#\# & Weight & Breed \\
\#\# & 1 & 20.770000000000000 & A \\
\#\# & 2 & 9.080000000000000 & A \\
\#\# & 3 & 9.800000000000001 & A \\
\#\# & 4 & 8.130000000000001 & A \\
\#\# & 5 & 16.539999999999999 & A \\
\#\# & 6 & 11.359999999999999 & A
\end{tabular}
```


Specifying a different separator

If your file is neither tab or comma separated, then read.csv and read.delim will not be able to read the file correctly with their default arguments. In the following example, we try and use to read.csv on a file with columns that are separated with a space (" ").

```
myfile <- "PrimerExamples/space-separated.csv"
mydata <- read.csv(myfile)
dim(mydata)
## [1] 12 1
head(mydata)
```

\#\# Month.Failure.rate
\#\# 1 January 2.9
\#\# 2 February 2.99
\#\# 3 March 2.48
\#\# 4 April 1.48
\#\# 5 May 2.71
\#\# 6 June 4.17

We see that the dimensions of the data object are incorrect. Both read.csv and read.delim have the option to specify a different separator.

```
mydata <- read.csv(myfile, sep=" ")
dim(mydata)
```

\#\# [1] 12 2
head(mydata)

\#\#	Month Failure.rate	
\#\#	J	January

SPSS file

R is able to read data created by SPSS. This requires an additional package to be loaded; foreign.

```
library(foreign)
```

You only need to load the library once per R-session. We can now call the read.spss function from foreign to create a data frame from your input file.

```
myfile <- "PrimerExamples/p004.sav"
mydata <- read.spss(myfile,to.data.frame = TRUE)
dim(mydata)
## [1] 199 7
head(mydata)
\begin{tabular}{lrrrrrrr} 
\#\# & CURRENTM & PREVIOUS & FAT & PROTEIN & DAYS & LACTATIO & I79 \\
\#\# 1 & 45 & 45 & 5.5 & 8.9 & 21 & 5 & 0 \\
\#\# 2 & 86 & 86 & 4.4 & 4.1 & 25 & 4 & 0 \\
\#\# 3 & 50 & 50 & 6.5 & 4.0 & 25 & 7 & 0 \\
\#\# 4 & 42 & 42 & 7.4 & 4.1 & 25 & 2 & 0 \\
\#\# 5 & 61 & 61 & 3.8 & 3.8 & 33 & 2 & 0 \\
\#\# 6 & 93 & 93 & 4.2 & 3.0 & 45 & 3 & 0
\end{tabular}
```

The foreign package is also able to read files in SAS (read.export) and STATA (read.dta) formats, but sadly not Graphpad Prism.

Further options for reading files

Sometimes we might be faced with 'messy' data that do not have a straightforward format of rows and columns. read.csv and read. delim are in fact specialised versions of a generic read.table function. This function has many options to allow finer-grain control over how files are read into R, as you will see from the manual page.

```
?read.table
```

We now summarise the options that prove to be most useful

Skipping lines

By default, R will assume that your data table starts on the first line of the file and that the column headers are found on the first line. However, sometimes the data table can be preceeded with several lines of header information. The header may contain useful information for the user, such as the date the file was generated and software versions etc, but is not relevant when we try and read the data table into R.

If we try and use the default settings of read.delim to read a tab-delimited file with arbitrary header information, the following occurs. In this case, the file contains counts for a number of barcodes detected on a particular lane of sequencing. Naturally, we might want to read these data into R and perform some exploratory analysis and diagnostics.

```
myfile <- "PrimerExamples/file-with-header.txt"
mydata <- read.delim(myfile)
head(mydata)
```

\#\# X100000_D00000_0000_C00CXXXXX
\#\# 1 =============================
\#\# 2 Lane 1 (SLX-0000)

```
## 3
## 4
    260621866 reads
    22313252 8.56% lost
## 5
## 6
1 = threshold for match
```

You will notice that R has tried to interpret the header information as lines of the data table, and therfore the data is not imported correctly.

Fortunately, both read.csv and read.delim have a skip argument so that we can start reading the data table from a pre-determined position in the file. In this example we have to skip the first 11 lines of the file in order to reach the table.

```
mydata <- read.delim(myfile, skip=11)
head(mydata)
## Index Total Balance X X0 X.1 X1
## 1 CGAGGCTG,CTCTCTAT 11772135 99.37% 11405699 4.37% 366436 0.14%
## 2 TAGGCATG,CTCTCTAT 9812302 82.82% 9515630 3.65% 296672 0.11%
## 3 CTCTCTAC,CTCTCTAT 8971207 75.72% 8715457 3.34% 255750 0.09%
## 4 CAGAGAGG,CTCTCTAT 13059606 110.24% 12650308 4.85% 409298 0.15%
## 5 GCTACGCT,CTCTCTAT 10757117 90.80% 10277334 3.94% 479783 0.18%
## 6 CGTACTAG,CTCTCTAT 14975852 126.41% 14462740 5.54% 513112 0.19%
```

In practice, you may have to try different values for the skip argument in order to obtain the correct result. Use of the head and dim functions should help you determine when the data has been read correctly

Files with no header

Conversely, sometimes files can be created without any column names. By default, R assumes that the first row in the file contains column headings. This can have unexpected consequences when a file does not contain column headings.

```
myfile <- "PrimerExamples/file-with-no-header.csv"
mydata <- read.csv(myfile)
head(mydata)
```

\#\# January X2.9
\#\# 1 February 2.99
\#\# 2 March 2.48
\#\# 3 April 1.48
\#\# 4 May 2.71
\#\# 5 June 4.17
\#\# 6 July 3.74
dim(mydata)
\#\# [1] 112
colnames (mydata)
\#\# [1] "January" "X2.9"

In this example, R took the first line of the file to be the column headings and so we have column names January \& X2.9. Moreover, the data frame produced has 11 rows rather than 12. The remedy is to set the header argument to FALSE. Both read.csv and read.delim are able to recognise the header argument.

```
myfile <- "PrimerExamples/file-with-no-header.csv"
mydata <- read.csv(myfile,header=FALSE)
head(mydata)
```

\#\# V1 V2
\#\# 1 January 2.90
\#\# 2 February 2.99
\#\# 3 March 2.48
\#\# 4 April 1.48
\#\# 5 May 2.71
\#\# 6 June 4.17
dim(mydata)
\#\# [1] 12 2
colnames(mydata)
\#\# [1] "V1" "V2"

You can modify the column names of the mydata object.

```
colnames(mydata) <- c("Month", "Value")
```


Reading a pre-determined number of lines

It is possible to read only a fixed number of rows by using the nrows argument. Useful if you just want to see the first few lines in a file.

```
subset <- read.csv("PrimerExamples/One-sample t-test.csv",nrows=4)
subset
## Month Failure.rate
## 2 February 2.99
## 3 March 2.48
## 4 April 1.48
```


Invalid characters

Consider the following file, which we are told has the expression levels of 20 genes. We use read.delim to read the file (as it is tab-delimited)

```
myfile <- "PrimerExamples/DiffGenes.tsv"
mydata <- read.delim(myfile)
## Warning: EOF within quoted string
head(mydata)
## LpR2 X3.57945023380892
## 1 fs(1)h 3.138
## 2 CG6954 2.749
## 3 Psa 2.701
## 4 zfh2 2.625
## 5 Fur1 2.441
## 6 ct 2.380
dim(mydata)
## [1] 11 2
```

However, the number of rows comes out as 11. We can use the tail function (analagous to head) to look at the last few rows in the file.

```
tail(mydata)
##
## 6
## 7
## 8
## 9
## 10
## 11 oc\t2.14209962314577\npros\t2.08816756905585\nKr-h1\t-2.04473631749177\nCG5149\t-2.15211774831633
## X3.57945023380892
## 6 2.380
## 7 2.367
## 8 2.357
## 9 2.260
## 10 2.174
## 11 NA
```

Problems of this nature are usually due to an extraneous quotation mark " or ' being found somewhere in the file. We can tell read.delim to ignore quotation marks in the following way. Of course, we could have editted the raw data to remove the quote mark, but this might not be practical for larger files.

```
mydata <- read.delim(myfile,quote = "")
```

We now look at a second example file, which upon first impressions loads without any problems.

```
myfile <- "PrimerExamples/DiffGenes2.tsv"
mydata <- read.delim("PrimerExamples/DiffGenes2.tsv",header=FALSE)
head(mydata)
```

```
## V1 V2
## 1 Psa 3.85289908747006
## 2 vnd 3.64569585507463
## 3 ct 3.20099018731361
## 4 fs(1)h 3.14893215463257
## 5 btd 3.12292776675935
## 6 zfh2 2.84206544957174
```

dim(mydata)
\#\# [1] 272

A natural data exploration step would be to calculate the mean of the gene expression values, which are stored in the second column. However, we cannot do this even if we tell R to ignore any NA values. We can discover that the second has not been treated as numeric values by R.

```
mean(mydata[,2])
## Warning: argument is not numeric or logical: returning NA
## [1] NA
mean(mydata[,2],na.rm=TRUE)
## Warning: argument is not numeric or logical: returning NA
## [1] NA
summary(mydata[,2])
```

\#\#	$?$	-2.04041157013508	2.16058794530145	2.17521378431384
\#\#	1	1	1	1
\#\#	-2.18074007124187	2.22322147868055	2.28021875859062	2.3040098655437
\#\#	1	1	1	1
\#\#	-2.34805605180196	2.43003804114927	-2.44043700058667	2.51110827431386
\#\#	1	1	1	1
\#\#	2.54242322740185	2.54754537929952	2.56790148021494	2.60223270812433
\#\#	1	1	1	1
\#\#	-2.72564011017977	-2.72929046084956	2.84206544957174	-2.9554891237748
\#\#	1	1	1	1
\#\#	3.12292776675935	-3.14132775338133	3.14893215463257	3.20099018731361
\#\#	1	1	1	1
\#\#	3.64569585507463	3.85289908747006	-3.8881615792709	
\#\#	1	1	1	
str (mydata)				

\#\# 'data.frame': 27 obs. of 2 variables:
\#\# \$ V1: Factor w/ 27 levels "Awd","brat","btd",..: 202610113272119423 ...
\#\# \$ V2: Factor w/ 27 levels "?","-2.04041157013508",..: 26252423211916151413 ...

The issue is that our collaborator has chosen to use a ? to denote a missing value in the second column. This causes R to think that this column contains characters rather than numbers. A solution is to use the na.strings argument to specify a particular value that is used to denote a missing value.

```
myfile <- "PrimerExamples/DiffGenes2.tsv"
mydata <- read.delim("PrimerExamples/DiffGenes2.tsv",header=FALSE,na.strings="?")
head(mydata)
## V1 V2
## 1 Psa 3.853
## 2 vnd 3.646
## 3 ct 3.201
## 4 fs(1)h 3.149
## 5 btd 3.123
## 6 zfh2 2.842
str(mydata)
## 'data.frame': 27 obs. of 2 variables:
## $ V1: Factor w/ 27 levels "Awd","brat","btd",..: 20 26 10 11 3 27 21 19 4 23 ...
## $ V2: num 3.85 3.65 3.2 3.15 3.12 ...
summary(mydata [, 2])
\begin{tabular}{rrrrrrrr} 
\#\# & Min. 1 1st Qu. & Median & Mean 3 3rd Qu. & Max. & NA's \\
\(\# \#\) & -3.890 & -2.310 & 2.290 & 0.835 & 2.590 & 3.850 & 1
\end{tabular}
mean(mydata[,2],na.rm=TRUE)
```

\#\# [1] 0.8349

If all else fails. . .

The readLines function can be used. This is a low-level function for reading data into R and reads each line in the file as avector, along with the characters used to separate the columns. For example, if we read a file with a .txt extension.

```
temp <- readLines("PrimerExamples/Indepentent two-sample t-test_v2_long.txt")
head(temp)
## [1] "Weight\tBreed" "20.77\tA" "9.08\ta" "9.8\tA"
## [5] "8.13\tA" "16.54\tA"
```

The fact that a $\backslash t$ character can be seen in each item of the vector tells us that we should be using the read.delim function. Likewise, with a .csv

```
temp <- readLines("PrimerExamples/One-sample t-test.csv")
head (temp)
```

```
## [1] "Month,Failure rate" "January,2.9" "February,2.99"
## [4] "March,2.48" "April,1.48" "May,2.71"
```

each item in the vector has a , character which is used to separate the data into two columns. We should read this file using read.csv

If we have a file with header information, we can use readLines to identify the line on which the data table begins, and hence what we should use as a skip argument.

```
temp <- readLines("PrimerExamples/file-with-header.txt")
temp [1:15]
```

\#\# [1] "100000_D00000_0000_C00CXXXXX"
\#\# [2] "============================="
\#\# [3] ""
\#\# [4] "Lane 1 (SLX-0000)"
\#\# [5] "-------------------"
\#\# [6] ""
\#\# [7] "260621866 reads"
\#\# [8] "22313252 8.56\% lost"
\#\# [9] "1 = threshold for match"
\#\# [10] "4 = minimum distance between barcodes"
\#\# [11] "Expected:"
\#\# [12] "Index\tTotal\tBalance\t\t0\t\t1"
\#\# [13] "CGAGGCTG,CTCTCTAT\t11772135\t99.37\%\t11405699\t4.37\% \t366436\t0.14\%"
\#\# [14] "TAGGCATG,CTCTCTAT\t9812302\t82.82\%\t9515630\t3.65\% \t296672\t0.11\%"
\#\# [15] "CTCTCTAC, CTCTCTAT\t8971207\t75.72\%\t8715457\t3.34\%\t255750\t0.09\%"

In this case, we can see the column headings for the data table start on line 12. Thus, we should read the file with skip=11 in the function read.delim.

Strings as factors

R is primarily a statistics language so much of its functionality is geared-up to make things ameanable to statistical analysis. For instance, it will prefer to work with Factors rather than characters. When a data table is read into R, as stored as a data frame, the default behaviour is to store character vectors as factors. This may not always be neccesary.

```
myfile <- "PrimerExamples/One-sample t-test.csv"
mydata <- read.csv(myfile)
str(mydata)
## 'data.frame': 12 obs. of 2 variables:
## $ Month : Factor w/ 12 levels "April","August",..: 5 4 8 1 9 7 6 2 12 11...
## $ Failure.rate: num 2.9 2.99 2.48 1.48 2.71 4.17 3.74 3.04 1.23 2.72 ...
```

We do not plan to take advantage of this behaviour and can easily work with the months in character form. Therefore we can set the argument stringsAsFactors=FALSE

```
myfile <- "PrimerExamples/One-sample t-test.csv"
mydata <- read.csv(myfile,stringsAsFactors=FALSE)
str(mydata)
## 'data.frame': 12 obs. of 2 variables:
## $ Month : chr "January" "February" "March" "April" ...
## $ Failure.rate: num 2.9 2.99 2.48 1.48 2.71 4.17 3.74 3.04 1.23 2.72 ...
```


Data in multiple files

If the dataset you want to import is spread over several data files, you will have to read each file individually and combine the respective data frames into a single object.

Data from online sources

The repmis package (misellaneous tools for reproducible research) contains useful functions to retrieve online data.

```
install.packages("repmis")
```

A useful resource for such data is the Github page of Vincent Arel-Bundock, which has csv version of example datasets found in many R packages. We can download data from this page using the source_data function. For example, if we browse the web page we can see there is an dataset containing Ovarian Cancer survival data. We can copy the URL of the corresponding . csv file and paste into R.

```
library(repmis)
surv <- source_data("http://vincentarelbundock.github.io/Rdatasets/csv/survival/ovarian.csv")
head(surv)
```


Using pre-built datasets

R comes with the datasets package which contains many example datasets ready for exploration and analysis. To see what datasets are available, along with brief descriptions, enter the following;

```
data()
```

If you see a dataset that might be interesting (e.g. the DNase dataset which measures the density of a protein at various concentrations), it can be loaded into R in the following manner.

```
data(DNase)
head(DNase)
```

$\left.\begin{array}{lrrr}\text { \#\# } & \text { Run } & \text { conc } & \text { density } \\ \text { \#\# } & 1 & 1 & 0.04883 \\ \text { \#\# } & 2 & 1 & 0.04883 \\ \text { \#\# } & 3 & 1 & 0.19531\end{array}\right) 0.018$ 0.121

Further details on the dataset can be found on its help page.
?DNase

Moreover, example plots and code can be generated using the example function.
example(DNase)
\#\#
\#\# DNase> require(stats); require(graphics)
\#\#
\#\# DNase> \#\# Don't show:
\#\# DNase> options(show.nls.convergence=FALSE)
\#\#
\#\# DNase> \#\# End Don't show
\#\# DNase> coplot(density ~ conc | Run, data = DNase,
\#\# DNase+ show.given = FALSE, type = "b")

Given : Run

\#\#
\#\# DNase> coplot(density ~ log(conc) | Run, data = DNase,
\#\# DNase+ show.given = FALSE, type = "b")
Given : Run

\#\#
\#\# DNase> \#\# fit a representative run
\#\# DNase> fm1 <- nls(density ~ SSlogis(log(conc), Asym, xmid, scal),
\#\# DNase+ data = DNase, subset = Run == 1)
\#\#
\#\# DNase> \#\# compare with a four-parameter logistic
\#\# DNase> fm2 <- nls(density ~ SSfpl(log(conc), A, B, xmid, scal),
\#\# DNase+ data = DNase, subset = Run == 1)
\#\#
\#\# DNase> summary (fm2)
\#\#
\#\# Formula: density ~ SSfpl(log(conc), A, B, xmid, scal)
\#\#
\#\# Parameters:
\#\# Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

\#\# A	-0.0079	0.0172	-0.46	0.65

$\begin{array}{llllll}\# \# & 2.3772 & 0.1095 & 21.71 & 5.4 e-11 & * * *\end{array}$
$\begin{array}{llllll}\text { \#\# xmid } & 1.5074 & 0.1021 & 14.77 & 4.6 \mathrm{e}-09 & * * * \\ \text { \#\# scal } & 1.0626 & 0.0570 & 18.64 & 3.2 \mathrm{e}-10 & \text { *** }\end{array}$
\#\# ---
\#\# Signif. codes: $0{ }^{\prime * * * ' ~} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\#\#
\#\# Residual standard error: 0.0198 on 12 degrees of freedom
\#\#
\#\#
\#\# DNase> anova(fm1, fm2)
\#\# Analysis of Variance Table

```
##
## Model 1: density ~ SSlogis(log(conc), Asym, xmid, scal)
## Model 2: density ~ SSfpl(log(conc), A, B, xmid, scal)
## Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)
## 1 13 0.00479
## 2 12 0.00471 1 8.23e-05 0.21 0.66
```


Data manipulation

The term data manipulation is used here to describe the steps that occur after having read data into R and prior to plotting and/or statistical analysis.

Selecting columns from a data frame

We will illustrate using the mtcars data, one of the in-built datasets in R . We can load the data using the data function and query the dimensions and print the first few lines using dim and head.

Subsetting in R always uses the [row, column] notation.

By column number

```
data(mtcars)
head(mtcars)
```

\#\#	mpg	cyl	disp	hp	drat	wt	qsec	vs	am gear	carb	
\#\# Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
\#\# Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
\#\# Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
\#\# Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
\#\# Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
\#\# Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

dim(mtcars)
\#\# [1] 3211

Columns in the data frame can be retrived using a numeric index. The first column can be retrieved by specifying the column as 1 in [row, column] notation. However, we if we want values for all observations (rows) we can neglect to specify a value before the , e.g.

```
mtcars[,1]
## [1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2
## [15] 10.4 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4
## [29] 15.8 19.7 15.0 21.4
```

The output is a vector and it's length will be the same as the number of rows in the data frame. Note that we have not altered the mtcars data frame in any way. It will still have the same number of columns.

```
dim(mtcars)
```

\#\# [1] 3211

If we want to do some further calculations on the vector we have extracted, we need to assign it to a variable

```
myvector <- mtcars[,1]
length(myvector)
## [1] 32
myvector
## [1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2
## [15] 10.4 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4
## [29] 15.8 19.7 15.0 21.4
```

The notation is very similar to retrieve the second column

```
myvector <- mtcars[,2]
length(myvector)
```

\#\# [1] 32
myvector
\#\# [1] 66468684466888888444488884448684

If we want to retrieve the first and second columns at the same time, we can construct a vector, using the c function, comprising the indices we want to retrive and use this in the [] notation. The result is a data frame itself.

```
mydf <- mtcars[,c(1,2)]
head(mydf)
```

\#\# mpg cyl
\#\# Mazda RX4 21.06
\#\# Mazda RX4 Wag 21.06
\#\# Datsun 71022.84
\#\# Hornet 4 Drive 21.46
\#\# Hornet Sportabout 18.78
\#\# Valiant 18.16
dim(mydf)
\#\# [1] 32 2

We can also use the : shortcut to generate a sequence of consecutive integers

```
mydf <- mtcars[,c(1:3)]
head(mydf)
```

\#\#	mpg	cyl	disp
\#\# Mazda RX4	21.0	6	160
\#\# Mazda RX4 Wag	21.0	6	160
\#\# Datsun 710	22.8	4	108
\#\# Hornet 4 Drive	21.4	6	258
\#\# Hornet Sportabout	18.7	8	360
\#\# Valiant	18.1	6	225

dim(mydf)
\#\# [1] 32 3

By column name (Recommended)

We can also extract data using the names of columns. This is the recommended approach, as you might not be sure that the same variables will always be stored in the same column.

```
myvec <- mtcars[,"mpg"]
head(myvec)
## [1] 21.0 21.0 22.8 21.4 18.7 18.1
```

The column names can be combined using the c function

```
mydf <- mtcars[,c("mpg","cyl")]
head(mydf)
## mpg cyl
## Mazda RX4 21.0 6
## Mazda RX4 Wag 21.0 6
## Datsun 710 22.8 4
## Hornet 4 Drive 21.4 6
## Hornet Sportabout 18.7 8
## Valiant 18.1 6
```

We can also access columns by name using the $\$$ operator. By default, this will return all values in the column. This approach can be used in conjunction with tab-completion; meaning that you start typing the name of the column and press the TAB key. A list of possible column names will then appear.

```
myvec <- mtcars$mpg
myvec
```

```
## [1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2
```


[1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2

[15] 10.4 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4

[15] 10.4 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4

[29] 15.8 19.7 15.0 21.4

```
## [29] 15.8 19.7 15.0 21.4
```


Row subsetting

Subset rows by index

If we know the index of the row we want to retrieve, we can supply these indices in the [] notation. The get the first row, we can do

```
mtcars[1,]
#
```

Muliple rows can be specified at a time. For example using the : shortcut

```
mtcars[1:5,]
```

\#\#	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
\#\# Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
\#\# Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
\#\# Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
\#\# Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
\#\# Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2

Logical indexing

The term logical is used to describe values that are either TRUE or FALSE (sometimes called Boolean values in other languages). We can combine logical values into a vector and use for subsetting. In particular, they can be used to specify exactly which elements we extract from a vector. In this example, we create a vector of length 10, and another logical vector of the same length. Using the logical vector within the square brackets [] will tell R to extract elements only when the corresponding value in the the logical vector is TRUE

```
myvec <- 1:10
myvec
## [1] [1
logvec <- c(TRUE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,TRUE)
logvec
```

\#\# [1] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
myvec[logvec]
\#\# [1] 1 2 10

In this case, logvec has TRUE values in positions $1,2,10$. So these are the elements of myvec that can extracted in myvec [logvec].

There are several arithmetic operations that perform comparisons and produce a logical vector as output. The most common of these are $>,<,==$. Where $==$ is used to test that two numerical values are the same.

If we wanted to restrict the data frame to rows where the mpg is less than 15 , we would first create a vector that will test all values of mpg to see if they are less than 15 . Notice that the vector created is the same length as the number of rows in the data frame (32).

```
myind <- mtcars$mpg < 15
myind
```

\#\# [1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
\#\# [12] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
\#\# [23] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
length(myind)
\#\# [1] 32

The logical vector, can now be used to subset the data frame. Only rows where myind has a value of TRUE will be returned.

```
mtcars[myind,]
\begin{tabular}{lrrrrrrrrrrr} 
\#\# & mpg & cyl & disp & hp & drat & wt & qsec & vs & am & gear & carb \\
\#\# Duster 360 & 14.3 & 8 & 360 & 245 & 3.21 & 3.570 & 15.84 & 0 & 0 & 3 & 4 \\
\#\# Cadillac Fleetwood & 10.4 & 8 & 472 & 205 & 2.93 & 5.250 & 17.98 & 0 & 0 & 3 & 4 \\
\#\# Lincoln Continental & 10.4 & 8 & 460 & 215 & 3.00 & 5.424 & 17.82 & 0 & 0 & 3 & 4 \\
\#\# Chrysler Imperial & 14.7 & 8 & 440 & 230 & 3.23 & 5.345 & 17.42 & 0 & 0 & 3 & 4 \\
\#\# Camaro Z28 & 13.3 & 8 & 350 & 245 & 3.73 & 3.840 & 15.41 & 0 & 0 & 3 & 4
\end{tabular}
```

Note that in the previous command we have created a subset of the data frame and not altered the original object; the number of rows is still 32

```
subset <- mtcars[myind,]
subset
## mpg cyl disp hp drat wt qsec vs am gear carb
## Duster 360 14.3 8 360 245 3.21 3.570 15.84 0 0 0 % 3 4
## Cadillac Fleetwood 10.4 8 4 42 205 2.93 5.250 17.98 0 0 0 % 3 % 4
## Lincoln Continental 10.4 8 4 460 215 3.00 5.424 17.82 
```



```
## Camaro Z28 13.3 8 350 245 3.73 3.840 15.41 0 0 0 % 3 4
dim(subset)
## [1] 5 11
dim(mtcars)
## [1] 32 11
```

Logical vectors can be used in combination, provided they are the same length. Now if we wanted all cars with mpg < 15 and drat > 3 we can combine the two conditions using the \& operation.

```
myind <- mtcars$mpg < 15 & mtcars$drat > 3
myind
```

\#\# [1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
\#\# [12] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
\#\# [23] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
length(myind)
\#\# [1] 32

Notice that myind is still length 32.

```
subset <- mtcars[myind,]
subset
## mpg cyl disp hp drat wt qsec vs am gear carb
## Duster 360 14.3 8
## Chrysler Imperial 14.7 8
## Camaro Z28 13.3 8 350 245 3.73 3.840 15.41 0 0 0 % 3 4
```

Other ways of combining logical vectors include \mid (or) and ! (negation).

\%in\%

A common task in exploratory data analysis is to ask whether a specific value or values exists in a larger R object. For example you may want to know whether a specific gene name appears in a long list of names you've just read in. To achieve this we can use the \%in\% command. Note that we have to specify each gene name within quotation marks " ".

```
"BRCA1" %in% c("RAS", "MYC", "BRCA1", "TP53")
## [1] TRUE
```

In the case above we were only interested in a single text query. The example below demonstrates both that $\%$ in\% is equally happy working with numeric values, and that a vector of queries can be used in a single command. Here a vector of TRUE or FALSE values the same length as the number of queries will be returned. This is far more efficient that trying each in turn.

```
c(1,5,11) %in% 1:10
```

\#\# [1] TRUE TRUE FALSE

In our particular example, we could restrict the analysis to just rows that correspond to particular cars. The car names appear in the rownames of the data frame.

```
rownames(mtcars)
```

```
## [1] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710"
## [4] "Hornet 4 Drive"
## [7] "Duster 360"
## [10] "Merc 280"
## [13] "Merc 450SL"
"Merc 450SLC"
"Merc 450SE"
    "Hornet Sportabout"
"Valiant"
    "Merc 240D"
    "Merc 230"
"Cadillac Fleetwood"
## [16] "Lincoln Continental"
## [19] "Honda Civic" "Toyota Corolla"
## [22] "Dodge Challenger" "AMC Javelin"
"Fiat 128"
"Toyota Corona"
"Camaro Z28"
## [25] "Pontiac Firebird" "Fiat X1-9" "Porsche 914-2"
## [28] "Lotus Europa" "Ford Pantera L"
    "Ferrari Dino"
## [31] "Maserati Bora" "Volvo 142E"
myInd <- rownames(mtcars) %in% c("Merc 230", "Merc 280")
myInd
```

\#\# [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
\#\# [12] FALSE FALSE
\#\# [23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

```
mtcars[myInd,]
```

| \#\# | | mpg cyl | disp | hp | drat | wt | qsec | vs | am | gear carb | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| \#\# Merc 230 | 22.8 | 4 | 140.8 | 95 | 3.92 | 3.15 | 22.9 | 1 | 0 | 4 | 2 |
| \#\# Merc 280 | 19.2 | 6 | 167.6 | 123 | 3.92 | 3.44 | 18.3 | 1 | 0 | 4 | 4 |

myInd is a logical vector (i.e. either TRUE or FALSE) of length 32, where each denotes whether that particular rownames is one of the supplied vector. This logical vector can then be used to subset the data frame.

match,

While the $\%$ in\% command is useful for telling you whether a query appears somewhere, it doesn't specify where in the subject you will find it. However there are several ways to achieve just this, where perhaps the most straightforward is which().

```
which(c("RAS", "MYC", "BRCA1", "TP53") == "BRCA1")
## [1] 3
```

However this approach falls down if one is interested in multiple queries.

```
which(c("RAS", "MYC", "BRCA1", "TP53") == c("BRCA1", "RAS"))
## [1] 3
```

To avoid the confusion this could cause, it is better the employ the function match()

```
match(x = c("BRCA1", "MYC"), table = c("RAS", "MYC", "BRCA1", "TP53"))
```

\#\# [1] 32

If we just wanted to find which row corresponds to Merc 230 we can use the match function to see the index of the rownames (mtcars) vector that corresponds to the string "Merc 230".

```
myInd <- match("Merc 230", rownames(mtcars))
myInd
## [1] 9
mtcars[myInd,]
```

```
## mpg cyl disp hp drat wt qsec vs am gear carb
```

\#\# Merc $23022.84140 .8953 .923 .1522 .9 \quad 1 \quad 0 \quad 4 \quad 2$

However, we have to remember that match will only return the index of the first occurence. If the string we want to find occurs multiple times, then we may get unexpected results further on in the analysis. Also, the text has to exactly match. Sometimes it is safer to use the grep function.

grep

grep will return all rownames that contain the string Merc somewhere in their name we can use the grep function.

```
myInd <- grep("Merc", rownames(mtcars))
myInd
## [1] 8 8 9 10 11 12 13 14
mtcars[myInd,]
\begin{tabular}{llrrrrrrrrrrr} 
\#\# & & mpg cyl & disp & hp drat & wt & qsec & vs & am gear carb \\
\#\# Merc 240D & 24.4 & 4 & 146.7 & 62 & 3.69 & 3.19 & 20.0 & 1 & 0 & 4 & 2 \\
\#\# Merc 230 & 22.8 & 4 & 140.8 & 95 & 3.92 & 3.15 & 22.9 & 1 & 0 & 4 & 2 \\
\#\# Merc 280 & 19.2 & 6 & 167.6 & 123 & 3.92 & 3.44 & 18.3 & 1 & 0 & 4 & 4 \\
\#\# Merc 280C & 17.8 & 6 & 167.6 & 123 & 3.92 & 3.44 & 18.9 & 1 & 0 & 4 & 4 \\
\#\# Merc 450SE & 16.4 & 8 & 275.8 & 180 & 3.07 & 4.07 & 17.4 & 0 & 0 & 3 & 3 \\
\#\# Merc 450SL & 17.3 & 8 & 275.8 & 180 & 3.07 & 3.73 & 17.6 & 0 & 0 & 3 & 3 \\
\#\# Merc 450SLC & 15.2 & 8 & 275.8 & 180 & 3.07 & 3.78 & 18.0 & 0 & 0 & 3 & 3
\end{tabular}
```

We can perform much more complex queries (e.g. only searching for words starting with 'Merc', or finding specific patterns of numbers and letter) using a tool called "Regular Expression" or "Regex". However, this beyond the scope of this document but a comprehensive introduction can be found at http://www.zytrax. com/tech/web/regex.htm

Adding new columns / variables

Re-ordering data frames

Often we want to sort data based on one or more properties. R has several options for performing this type of operation.

First we'll look at the order () function. In its simplest form this function takes a list of values and returns their ordering in ascending value. So in our example below the 15 th entry is the lowest, followed by the 16th, while the 20th entry is the highest.

If we actually want to put the data in this order, we need to use the subsetting approach.

```
order(mtcars[,"mpg"])
```

\#\# [1] $15 \begin{array}{llllllllllllllllllllll} & 16 & 24 & 7 & 17 & 31 & 14 & 23 & 22 & 29 & 12 & 13 & 11 & 6 & 5 & 10 & 25 & 30 & 1 & 2 & 4 & 32\end{array} 21$
\#\# [24] 30
mtcars[order(mtcars[,"mpg"]),]

| \#\# | mpg | cyl | disp | hp | drat | | wt | qsec | vs | am | gear carb |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| \#\# Cadillac Fleetwood | 10.4 | 8 | 472.0 | 205 | 2.93 | 5.250 | 17.98 | 0 | 0 | 3 | 4 |
| \#\# Lincoln Continental | 10.4 | 8 | 460.0 | 215 | 3.00 | 5.424 | 17.82 | 0 | 0 | 3 | 4 |
| \#\# Camaro Z28 | 13.3 | 8 | 350.0 | 245 | 3.73 | 3.840 | 15.41 | 0 | 0 | 3 | 4 |
| \#\# Duster 360 | 14.3 | 8 | 360.0 | 245 | 3.21 | 3.570 | 15.84 | 0 | 0 | 3 | 4 |
| \#\# Chrysler Imperial | 14.7 | 8 | 440.0 | 230 | 3.23 | 5.345 | 17.42 | 0 | 0 | 3 | 4 |
| \#\# Maserati Bora | 15.0 | 8 | 301.0 | 335 | 3.54 | 3.570 | 14.60 | 0 | 1 | 5 | 8 |
| \#\# Merc 450SLC | 15.2 | 8 | 275.8 | 180 | 3.07 | 3.780 | 18.00 | 0 | 0 | 3 | 3 |
| \#\# AMC Javelin | 15.2 | 8 | 304.0 | 150 | 3.15 | 3.435 | 17.30 | 0 | 0 | 3 | 2 |
| \#\# Dodge Challenger | 15.5 | 8 | 318.0 | 150 | 2.76 | 3.520 | 16.87 | 0 | 0 | 3 | 2 |
| \#\# Ford Pantera L | 15.8 | 8 | 351.0 | 264 | 4.22 | 3.170 | 14.50 | 0 | 1 | 5 | 4 |
| \#\# Merc 450SE | 16.4 | 8 | 275.8 | 180 | 3.07 | 4.070 | 17.40 | 0 | 0 | 3 | 3 |
| \#\# Merc 450SL | 17.3 | 8 | 275.8 | 180 | 3.07 | 3.730 | 17.60 | 0 | 0 | 3 | 3 |
| \#\# Merc 280C | 17.8 | 6 | 167.6 | 123 | 3.92 | 3.440 | 18.90 | 1 | 0 | 4 | 4 |
| \#\# Valiant | 18.1 | 6 | 225.0 | 105 | 2.76 | 3.460 | 20.22 | 1 | 0 | 3 | 1 |
| \#\# Hornet Sportabout | 18.7 | 8 | 360.0 | 175 | 3.15 | 3.440 | 17.02 | 0 | 0 | 3 | 2 |
| \#\# Merc 280 | 19.2 | 6 | 167.6 | 123 | 3.92 | 3.440 | 18.30 | 1 | 0 | 4 | 4 |
| \#\# Pontiac Firebird | 19.2 | 8 | 400.0 | 175 | 3.08 | 3.845 | 17.05 | 0 | 0 | 3 | 2 |
| \#\# Ferrari Dino | 19.7 | 6 | 145.0 | 175 | 3.62 | 2.770 | 15.50 | 0 | 1 | 5 | 6 |
| \#\# Mazda RX4 | 21.0 | 6 | 160.0 | 110 | 3.90 | 2.620 | 16.46 | 0 | 1 | 4 | 4 |
| \#\# Mazda RX4 Wag | 21.0 | 6 | 160.0 | 110 | 3.90 | 2.875 | 17.02 | 0 | 1 | 4 | 4 |
| \#\# Hornet 4 Drive | 21.4 | 6 | 258.0 | 110 | 3.08 | 3.215 | 19.44 | 1 | 0 | 3 | 1 |
| \#\# Volvo 142E | 21.4 | 4 | 121.0 | 109 | 4.11 | 2.780 | 18.60 | 1 | 1 | 4 | 2 |
| \#\# Toyota Corona | 21.5 | 4 | 120.1 | 97 | 3.70 | 2.465 | 20.01 | 1 | 0 | 3 | 1 |
| \#\# Datsun 710 | 22.8 | 4 | 108.0 | 93 | 3.85 | 2.320 | 18.61 | 1 | 1 | 4 | 1 |
| \#\# Merc 230 | 22.8 | 4 | 140.8 | 95 | 3.92 | 3.150 | 22.90 | 1 | 0 | 4 | 2 |
| \#\# Merc 240D | 24.4 | 4 | 146.7 | 62 | 3.69 | 3.190 | 20.00 | 1 | 0 | 4 | 2 |
| \#\# Porsche 914-2 | 26.0 | 4 | 120.3 | 91 | 4.43 | 2.140 | 16.70 | 0 | 1 | 5 | 2 |
| \#\# Fiat X1-9 | 27.3 | 4 | 79.0 | 66 | 4.08 | 1.935 | 18.90 | 1 | 1 | 4 | 1 |
| \#\# Honda Civic | 30.4 | 4 | 75.7 | 52 | 4.93 | 1.615 | 18.52 | 1 | 1 | 4 | 2 |
| \#\# Lotus Europa | 30.4 | 4 | 95.1 | 113 | 3.77 | 1.513 | 16.90 | 1 | 1 | 5 | 2 |
| \#\# Fiat 128 | 32.4 | 4 | 78.7 | 66 | 4.08 | 2.200 | 19.47 | 1 | 1 | 4 | 1 |
| \#\# Toyota Corolla | 33.9 | 4 | 71.1 | 65 | 4.22 | 1.835 | 19.90 | 1 | 1 | 4 | 1 |

To list the entries in the opposite order we can specify the argument decreasing $=$ TRUE.
mtcars[order(mtcars [,"mpg"], decreasing=TRUE),]
\#\# mpg cyl disp hp drat wt qsec vs am gear carb

\#\# Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
\#\# Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
\#\# Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
\#\# Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
\#\# Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
\#\# Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2
\#\# Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
\#\# Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
\#\# Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
\#\# Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
\#\# Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
\#\# Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2
\#\# Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
\#\# Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
\#\# Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6
\#\# Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
\#\# Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2
\#\# Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
\#\# Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
\#\# Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
\#\# Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
\#\# Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
\#\# Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4
\#\# Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2
\#\# Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
\#\# AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2
\#\# Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.60	0	1	5	8
\#\# Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
\#\# Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
\#\# Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
\#\# Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
\#\# Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4

Alternatively, R also includes the commnad sort(), which will perform the reordering automatically. It is also useful to note that both order() and sort () will work on character data too where items will be sorted alphabetically.

```
sort(mtcars[,"mpg"])
```


\#\# [15] 18.719 .219 .219 .721 .021 .021 .421 .421 .522 .822 .824 .426 .027 .3
\#\# [29] 30.430 .432 .433 .9

```
sort(rownames(mtcars))
```

| \#\# | [1] | "AMC Javelin" | "Cadillac Fleetwood" |
| :--- | :--- | :--- | :--- | "Camaro Z28"

```
## [25] "Merc 450SL" "Merc 450SLC" "Pontiac Firebird"
## [28] "Porsche 914-2" "Toyota Corolla" "Toyota Corona"
## [31] "Valiant"
"Volvo 142E"
```


Transpose a matrix

```
mydata <- read.csv("PrimerExamples/Paired two-sample t-test.csv")
dim(mydata)
## [1] 20 2
mydata.t <- t(mydata)
mydata.t
```

```
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
## Ovarian 1201 1030 895.6 842.1 903.1 1312 833.5 1008 1466 967.8 812.7
## Peritoneal 1156 1021 881.2 830.8 897.1 1263 823.1 951 1451 978.1 778.3
## [,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]
## Ovarian < 884.1 1359 1280 942.4 884.3 930.1 1147 881.5 1315
## Peritoneal 823.6 1336 1294 925.8 891.3 892.0 1133 847.8 1338
```


Text manipulation

Since we often begin an anaylsis be reading data from text files or spreadsheets, one frequently finds they require tools to manipulate this text data in ways that make further analysis easier e.g. extracting componant parts from complex sample IDs or manipulating date and time information.

Finding the number of characters

```
nchar(rownames(mtcars))
```

```
## [1] [10 13 10 14 17 [10 10 0
## [24] 10 16 9
```


Changing case

Sometimes it can be useful to standardise the case of any character information you're working with. It is not uncommon to import data from different sources where alternative choices have been made regarding capitalisation. For example it is not hard to imagine reading two tables relating to the same experiment where in one the entries are labelled "SAMPLE N" and in the other "Sample N". It is much easier to try and match entries in these two tables if they are converted to the same format.

R includes the functions toupper() and tolower() that will perform this transformation for you, rather than needing to edit the data directly.

```
exampleNames <- c("Sample 1", "Sample 2", "Sample 3", "Sample 4")
toupper(exampleNames)
```

```
## [1] "SAMPLE 1" "SAMPLE 2" "SAMPLE 3" "SAMPLE 4"
```

tolower (exampleNames)
\#\# [1] "sample 1" "sample 2" "sample 3" "sample 4"

Splitting into parts

The function strsplit() allows you to break a string into smaller parts, based on a specified criteria. In the example below we break our sample names where there is a space.

```
exampleNames <- c("Sample 1", "Sample 2", "Sample 3", "Sample 4")
strsplit(x = exampleNames, split = " ")
## [[1]]
## [1] "Sample" "1"
##
## [[2]]
## [1] "Sample" "2"
##
## [[3]]
## [1] "Sample" "3"
##
## [[4]]
## [1] "Sample" "4"
```

The output from this is a list, where the i th entry is the result of breaking the i th string passed to the function.

In cases like our example above, where we know every entry will be split into a consistent number of parts, it's often easier to transform this output into a matrix where each row represents an entry. To do this we make use of the unlist() function, which transforms our list into a vector followed by the command to create a matrix.

```
exampleNames <- c("Sample 1", "Sample 2", "Sample 3", "Sample 4")
namesList <- strsplit(x = exampleNames, split = " ")
matrix( unlist( namesList ), ncol = 2, byrow = TRUE )
```

\#\# [,1] [,2]
\#\# [1,] "Sample" "1"
\#\# [2,] "Sample" "2"
\#\# [3,] "Sample" "3"
\#\# [4,] "Sample" "4"

Extracting substrings

If we only want to retain a portion of a string we can use the substring function. In addition to the strings we want to process this takes two arguments: start and stop which are integers specifying the first and last characters we want to retain. In the example below we retain the last 5 characters (note the space is treated just like any other character).

```
exampleNames <- c("Sample 1", "Sample 2", "Sample 3", "Sample 4")
substr(exampleNames, start = 4, stop = 8)
## [1] "ple 1" "ple 2" "ple 3" "ple 4"
```


Replacing parts of strings

In addition to extracting portions of strings, you can replace them using the function sub(), much like one might use find and replace in a text editor. In the following example we start with 3 sample names. We then use the sub() command to replace "Person" with "Sample" and include a space before the number.

```
names <- c("Person1", "Person2", "Person3")
sub(pattern = "Person", replacement = "Sample ", x = names)
## [1] "Sample 1" "Sample 2" "Sample 3"
```

The us a second substitution function called gsub(). This works in much the same way as sub(), but replaces every instance of the pattern it finds, where as sub() only replaces the first occurance.

```
repeatExample <- c("Here Here")
sub(pattern = "Here", replacement = "Hear", x = repeatExample)
## [1] "Hear Here"
gsub(pattern = "Here", replacement = "Hear", x = repeatExample)
## [1] "Hear Hear"
```


Combining strings

To combine two strings we can use paste(). The result is a single string.

```
paste("Hello", "World")
```

\#\# [1] "Hello World"

We can combine more than two strings, as seen below. This example also highlights how shorter sets of strings (in this case "Month" and "is") will be reused as many times as necessary.

```
paste("Month", 1:12, "is", month.name)
```

```
## [1] "Month 1 is January" "Month 2 is February" "Month 3 is March"
## [4] "Month 4 is April" "Month 5 is May" "Month 6 is June"
## [7] "Month 7 is July" "Month 8 is August" "Month 9 is September"
## [10] "Month 10 is October" "Month 11 is November" "Month 12 is December"
```

The default behaviour of paste() is to place spaces between the string. If we want to alter this we need to specify the sep argument. Here we combine the months of the year with the number of characters in each word.

```
## [1] "January:7" "February:8" "March:5" "April:5" "May:3"
## [6] "June:4" "July:4" "August:6" "September:9" "October:7"
## [11] "November:8" "December:8"
```


Long versus wide format

Calculating summary statistics

```
mydata <- matrix(runif(1000),ncol=5)
summary(mydata)
```

\#\#	V1	V2	V3	V4
\#\#	Min. 00.0135	Min. 0.0202	Min. 00.0016	Min. $\quad 0.0149$
\#\#	1st Qu.:0.2807	1st Qu.:0.2802	1st Qu.:0.2703	1st Qu.:0.2622
\#\#	Median :0.4754	Median :0.5298	Median :0.4552	Median :0.4862
\#\#	Mean :0.5073	Mean :0.5304	Mean :0.4798	Mean :0.4996
\#\#	3rd Qu.:0.7580	3rd Qu. : 0.7821	3rd Qu. :0.7224	3rd Qu.:0.7398
\#\#	Max. $: 0.9928$	Max. 00.9976	Max. 00.9996	Max. $: 0.9919$
\#\#	V5			
\#\#	Min. 00.0007			
\#\#	1st Qu.:0.2606			
\#\#	Median :0.5326			
\#\#	Mean :0.5162			
\#\#	3rd Qu.:0.7433			
\#\#	Max. 0.0 .9998			

```
colMeans(mydata)
```

\#\# [1] $0.5073 \quad 0.5304 \quad 0.4798 \quad 0.4996 \quad 0.5162$
rowMeans (mydata)

```
## [1] 0.6352 0.4974 0.5621 0.5554 0.3327 0.4685 0.3456 0.3695 0.4628 0.3971
## [11] 0.6993 0.6260 0.3455 0.3589 0.6534 0.6222 0.3338 0.6381 0.3807 0.4602
## [21] 0.5630 0.3686 0.5532 0.4896 0.6699 0.5674 0.4722 0.5031 0.5814 0.4096
## [31] 0.5743 0.3545 0.3240 0.4430 0.5858 0.6559 0.4780 0.4064 0.7894 0.7948
## [41] 0.4864 0.5183 0.6420 0.6670 0.6290 0.4114 0.5155 0.5841 0.4546 0.4832
## [51] 0.6056 0.4692 0.5891 0.6203 0.1928 0.4540 0.5445 0.6039 0.6367 0.4912
## [61] 0.4532 0.5350 0.3714 0.6608 0.6547 0.8046 0.4179 0.5655 0.5935 0.3735
## [71] 0.6246 0.6341 0.5579 0.5066 0.4228 0.4545 0.5371 0.6332 0.4773 0.6210
## [81] 0.5824 0.5725 0.4554 0.6412 0.3704 0.5139 0.6116 0.5275 0.6463 0.2939
## [91] 0.4339 0.4720 0.5372 0.6112 0.5097 0.4469 0.3281 0.3906 0.7108 0.8021
## [101] 0.5717 0.4927 0.5273 0.4382 0.4618 0.5804 0.7585 0.6795 0.5051 0.4435
## [111] 0.4344 0.3999 0.5220 0.3655 0.1925 0.6342 0.2628 0.4834 0.6883 0.6777
## [121] 0.5914 0.5933 0.6659 0.5671 0.4801 0.4437 0.6130 0.5333 0.3799 0.5399
## [131] 0.3755 0.4177 0.5041 0.5387 0.3586 0.2401 0.2727 0.5021 0.3284 0.6635
## [141] 0.6084 0.2844 0.5298 0.4795 0.2847 0.5295 0.5381 0.6182 0.6613 0.4858
## [151] 0.3577 0.5588 0.3789 0.4624 0.7408 0.4281 0.5882 0.6188 0.4946 0.5235
## [161] 0.3778 0.5028 0.5077 0.4403 0.5150 0.4273 0.3924 0.4024 0.5427 0.4827
## [171] 0.5799 0.5764 0.4956 0.5236 0.2856 0.6098 0.4512 0.5912 0.4053 0.3738
## [181] 0.7745 0.4743 0.3243 0.5893 0.6405 0.6636 0.3734 0.4005 0.3460 0.4223
## [191] 0.6720 0.2741 0.4308 0.5304 0.2849 0.3393 0.5108 0.6245 0.4635 0.5268
```

```
IQR(mydata[,1])
```

\#\# [1] 0.4773
sd(mydata[,1])
\#\# [1] 0.2812

apply, tapply, aggregate

Writing data to a file

Plotting

A plot can be created in R simply by calling the plot function with a valid R object.
There are many optional arguments can be altered to change the apperance of the plots e.g adding titles or labels, altering the colour and shapes used to plot, or modifying the range of axes. Many of these options are available across a multitude of plotting functions. We'll initially demonstrate them using the histogram function but most can be applied to whatever type of plot you are trying to generate.

A histogram

The hist function requires a numeric vector, which could be the result of some calculation you or have performed or the column from a data frame. In this example, we will read an example file

```
mydata <- read.csv("PrimerExamples/One-sample t-test.csv")
mydata
```

\#\#	Month Failure.rate	
\#\# 1	January	2.90
\#\# 2	February	2.99
\#\# 3	March	2.48
\#\# 4	April	1.48
\#\# 5	May	2.71
\#\# 6	June	4.17
\#\# 7	July	3.74
\#\# 8	August	3.04
\#\# 9	September	1.23
\#\# 10	October	2.72
\#\# 11	November	3.23
\#\# 12	December	3.40

The data concern (fictional) failure rates for microarrays in Genomics. To visualise the distribution of the failure rates, we could use a histogram using the hist function. We have to select the relevant column from the data frame, in this case the second column.

Histogram of mydata\$Failure.rate

Unfortunately, the default plot that R creates is not that pretty. As with all plotting functions, there is a large amount of customisations that are possible. Details are on the help page for hist.
?hist

We can specify an alternative colour using the col argument.
hist(mydata[,2], col="steelblue")

Histogram of mydata[, 2]

And add more informative labels and titles using main and xlab
hist (mydata[,2], col="steelblue", main="Microarray Failure Rates", xlab="Rate")
Microarray Failure Rates

Technical modifications include displaying frequencies on the y-axis rather than counts.

```
hist(mydata[,2],col="steelblue",main="Microarray Failure Rates",xlab="Rate",freq = FALSE)
```

Microarray Failure Rates

We can also specify the number of breaks
hist (mydata [, 2] , col="steelblue", main="Microarray Failure Rates", xlab="Rate",freq = FALSE,breaks = 12)
Microarray Failure Rates

A scatter plot

The plot function is the generic function for plotting in R , and can produce different plots depending on the input. A scatter plot can be generated by specifying a vector to go along the x -axis, and a vector for the y axis. It is assumed that the first argument supplied is for the x axis, and the second for the y -axis.

mydata <- read.delim("PrimerExamples/Linear
mydata

\#\# regression.txt")

We can in fact just specify one vector, in which case the x axis is assumed to be the index of vector. plot(mydata[,2])

By default, a open circle is drawn at each x and y combination. If we wish, we can draw a line through the points by using the argument type="l"
plot(mydata[,2],type="1")

Or choose to have both a line and the points by specifying type="b"
plot(mydata[,2], type="b")

Later on, we will show how to add extra lines and points to this basic plot

Pie chart

A bar plot

```
mydata <- read.csv("PrimerExamples/One-sample t-test.csv")
mydata
## Month Failure.rate
## 1 January 2.90
## 2 February 2.99
## 3 March 2.48
## 4 April 1.48
## 5 May 2.71
## 6 June 4.17
## 7 July 3.74
## 8 August 3.04
## 9 September 1.23
## 10 October 2.72
## 11 November 3.23
## 12 December 3.40
```

We can add a name underneath each bar by changing the names.arg argument.

```
barplot(mydata[,2],names.arg=mydata[,1])
```


However, the default positioning of the labels is parallel to the axis and not all of the labels will fit in this space. We can change the orientation of the labels using the las argument. $0:=$ always parallel to the axis [default], 1: =always horizontal, $2:=$ always perpendicular to the axis, $3:=$ always vertical.

```
barplot(mydata[, 2],names.arg=mydata[,1],las=2)
```


The colMeans function can be used to calculate the mean of each column in a data frame, and returns the result as vector. Consequently, we can plot this vector as a barplot. Here we illustrate by first creating a matrix of random numbers.

```
mydata <- matrix(rnorm(100),ncol=10)
means <- colMeans(mydata)
barplot(means)
```


The A.B.M dataset describes cases of Acute Bacerial Meningitis.

```
abm <- read.csv("data//ABM.csv")
head(abm)
```


\#\#	6	.
\#\#	subset	abm
\#\#	1	test
\#\#	2	training
\#\#	3	test
\#\#	4	training
\#\#	5	test
\#\#	6	training
0		

$\operatorname{dim}(a b m)$

```
## [1] 581 43
```

table(abm\$sex)

We can notice from the table and plot that a third gender category has been included; .. In this dataset, the . character is being used to represent a missing value. We can change this behaviour at the point of reading the data by changing the na.strings argument to read.csv.

```
abm <- read.csv("data//ABM.csv",na.strings=".")
table(abm$sex)
```

\#\#
\#\# female male
\#\# 221279

table (abm\$sex, abm\$race)

\#\#			
\#\#		black	white
\#\#	female	133	86
\#\#	male	153	124

barplot(table(abm\$sex, abm\$race))

The plot can be improved by adding a legend and some colour.

```
barplot(table(abm$sex,abm$race),beside=TRUE,col=c("red","blue"))
```

legend("topright", fill=c("red", "blue"), legend=c("female", "male"))

A boxplot

The boxplot is a convenient way of comparing the distributions of numeric data. If given a numeric matrix, or data frame, it will construct a box from the quartiles of the data. The whiskers are plotted at 1.5 times the inter-quartile range. Outliers are defined to be more than 1.5 times away from the box and plotted as circle.

```
mydata <- matrix(rnorm(100),ncol=10)
```

boxplot(mydata)

Outliers can be omitted from the plotting

```
boxplot(mydata,outline = FALSE)
```


The title and axis labels can be modified in the usual manner.

```
boxplot(mydata,outline = FALSE,main="My boxplot", xlab="Columns")
```


My boxplot

A boxplot can also be generated if our data are in long rather than wide format. One such dataset is the mtcars dataset, which is one of the built-in datasets in R.

One of the variables, cyl can only take certain values and is therefore a categorical variable. We can therefore use it to split our observations into different groups. The mpg variable (miles-per-gallon) is continuous. By treating the data in an appropriate way, we can get the distribution of mpg values for each distinct value of cyl in the data. Such an aggregation is done by specifying a formula using the \sim operator; the expression mtcars\$mpg~mtcars\$cyl does just this.

```
data(mtcars)
head(mtcars)
```

\#\#	mpg	cyl	disp	hp	drat	wt	qsec	vs	am gear	carb	
\#\# Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
\#\# Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
\#\# Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
\#\# Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
\#\# Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
\#\# Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

```
str(mtcars)
```

```
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
```

```
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0}0011\mp@code{1
## $ am : num 11 1 1 0 0 0 0 0 0 0 0 % ..
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
length(mtcars$mpg)
## [1] 32
length(mtcars$cyl)
## [1] 32
table(mtcars$cyl)
##
## 4 6 8
## 11 7 14
boxplot(mtcars$mpg~mtcars$cyl)
```


A boxplot can sometimes be misleading, as it does not provide any information about how many observations are in each group. One thing we can do is adjust the widths of the bars to reflect the differing number of observations.

```
mydata[1:7,1] <- NA
boxplot(mydata, varwidth = TRUE)
```


Dotchart / stripchart
mydata <- matrix(rnorm(100), ncol=10)
boxplot(mydata)
stripchart(as.data.frame(mydata), add=TRUE, vertical=TRUE)

dotchart(mydata, vertical=TRUE)

Survival Curve

Growth curve

Replicating GraphPad Prism plots in \mathbf{R}

Exporting a plot

R is able to save graphics in a variety of formats. The easiest way of saving a plot is to use the Export tab in the plot window in RStudio. You will then have the option of saving the plot as a .pdf or a variety of other file formats such as .jpeg, .png, .tif.
N.B. .pdf plots can be futher altered in a graphics program such as Photoshop, whereas .jpeg, .png can be more easily inserted into presentations. Journals often require high-resolution images in .tiff or .eps format.
The lines of code required to save a plot to a file are almost identical to producing the plot within RStudio; the only difference is that you need to send the the plot to an alternative graphics device other than RStudio, and close the device afterwards.

There are various functions can be used to create an alternative graphics device. These include pdf, jpeg, png and have to be called before the code that creates the plot. You have to specify a file name that the plot will be written to. However, the file does not have to exist prior to creating the plot.

In the following example, we will save a boxplot as a .png file. We will therefore use the png function to write the plot to a file. If you run the code, you will notice that the plot is no longer displayed in RStudio. This is because the plot has been created in an alternative graphics device. We therefore have to use the dev.off function to close this device and allow us to open the file.

```
mydata <- read.csv("PrimerExamples/Paired two-sample t-test.csv")
file.exists("myboxplot.png")
```

\#\# [1] FALSE
list.files(pattern=".png")
\#\# [1] "mycoolplot.png"
png("myboxplot.png")
boxplot(mydata)
dev.off()
\#\# pdf
\#\# 2

You should notice that a file myboxplot.png has been created in your working directory. We can verify this using the file.exists and list.files functions.

```
file.exists("myboxplot.png")
```

\#\# [1] TRUE

```
list.files(pattern=".png")
```

\#\# [1] "myboxplot.png" "mycoolplot.png"

To create a .jpeg instead of a .png, we simply use jpeg instead of png.

```
jpeg("myboxplot.jpeg")
boxplot(mydata)
dev.off()
## pdf
## 2
```

You can specify the height and width of the plot by adjusting the height and width arguments. This can be done in the same way for the jpeg and png functions. The values for height and width should be the required number of pixels.

```
jpeg("myboxplot2.jpeg",width=800,height=500)
boxplot(mydata)
dev.off()
## pdf
## 2
```

.pdf documents as created in much the same way using the pdf function. However, you should note that the dimensions of the plot are specified in inches rather than pixels.

```
pdf("myboxplot.pdf",width=8,height=4)
boxplot(mydata)
dev.off()
## pdf
## 2
```

An important different between $. j p e g, . p n g$ and.$p d f$ is that.$p d f$ documents can have multiple pages. In the following example, we have multiple lines of code between the pdf and dev. off lines. Each plot is saved onto a separate page in the pdf document.

```
pdf("myplots.pdf")
hist(mydata[,1])
hist(mydata[,2])
boxplot(mydata)
dev.off()
## pdf
## 2
```


Changing the plot appearance

Titles and axis labels

It is always a good idea to use informative titles and axis labels on your plots. Unfortunately, the default plots produced by R try and guess labels from the data, which may not be that useful. The plot function has main, ylab and xlab arguments that can be used to specify these labels (which must be a character vector). Moreover, other plotting functions such as boxplot, barplot and histogram also use the same argument names.

```
mydata <- read.delim("PrimerExamples/Linear regression.txt")
plot(mydata[,1],mydata[,2],main="My Title", xlab="X axis", ylab="Y axis")
```


My Title


```
randMat <- matrix(runif(100),ncol=10)
boxplot(randMat, main="Some Random numbers" ,xlab="Column",ylab="Value")
```

Some Random numbers

barplot(randMat[,1], main="Barplot of random values",ylab="Value",xlab="Column")
Barplot of random values

Column
hist (randMat[,1],main="A random histogram", xlab="Value", ylab="Frequency of value")

A random histogram

Functions such as points, lines, text and abline cannot modify the title or axis labels. We can set the plot title to be blank (the empty string "") at the time the plot is created, and add a title manually later-on using the title function. The following also demonstrates that the colour and font of the title can be modified.

```
plot(randMat, main = "")
title(main = list("Pairwise plots of the random matrix", cex = 1.5,
    col = "red", font = 3))
```


Pairwise plots of the random matrix

Adding custom axes

It is possible to create your own axes. First, you can to create a plot with the axes=FALSE argument. You will see in the resulting plot that no axes are plotted

```
plot(randMat, axes=FALSE)
```

0

0

We can use the axis function to plot an axis at each side of the plot ($1=$ below, $2=$ left, $3=$ above and $4=$ right . Each time the axis function is called, a new axis is overlaid on the current plot.

```
plot(randMat, axes=FALSE)
axis(1)
```



```
plot(randMat, axes=FALSE)
axis(1)
axis(2)
```



```
plot(randMat, axes=FALSE)
axis(1)
axis(2)
axis(3)
```



```
plot(randMat, axes=FALSE)
axis(1)
axis(2)
axis(3)
axis(4)
```


You don't need to specify an axis for each side of the plot. The box function will enclose the remaining sides without giving an axis.

```
plot(randMat, axes=FALSE)
axis(2)
box()
```


randMat[,1]
The font and colour of each axis can also be changed

```
plot(randMat, axes=FALSE)
axis(1,font=1,col="red")
axis(2,font=2,col="orange")
axis(3,font=3,col="yellow")
axis(4,font=4,col="blue")
\begin{tabular}{ccccccc}
0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 \\
& 0 & & & &
\end{tabular}
```


We can change the position and labels of the tick marks

```
plot(randMat, axes=FALSE)
axis(1,font=1,col="red",at=seq(0,1,length.out = 4))
axis(2,font=2,col="orange",at=seq(0,1,length.out = 5),labels=letters[1:5])
axis(3,font=3,col="yellow",at=seq(0,1,length.out = 6),labels=month.name[1:6])
axis(4,font=4,col="blue",at=seq(0.2,1,length.out = 3),labels=c("Low","Medium","High"))
```


The tick labels can be rotated so that they are perpendicular to the axis

```
plot(randMat, axes=FALSE)
axis(1,font=1,col="red",at=seq(0,1,length.out = 4),las=2)
axis(2,font=2,col="orange",at=seq(0,1,length.out = 5),labels=letters[1:5],las=2)
axis(3,font=3,col="yellow",at=seq(0,1,length.out = 6),labels=month.name[1:6])
axis(4,font=4,col="blue",at=seq(0.2,1,length.out = 3),labels=c("Low","Medium","High"),las=2)
```


Specifying Colours

The simplest way of specifying a colour in R is to use a pre-defined character string. There are 657 preset values you can use, and their names can be printed to the screen using the colors function.

```
colors()
```

There is a colour chart available online that can be used to display the colors alongside the names.
You should make sure that the colour scheme that you choose is suitable for those with colourblindness. e.g. avoiding red / green colour schemes. One way of ensuring this is to use predfined pallettes in the RColorBrewer package.

```
library(RColorBrewer)
display.brewer.all()
```


You can pick one of these palette using the brewer.pal() function, where we specify first the number of distinct colours we want and then the name of the palette taken from the list in the image above.

To use the colours in a figure, most plotting functions include the argument col to indicate the colours you wish to use.

```
mypal <- brewer.pal(8, "Set1")
mydata <- read.csv("PrimerExamples/Paired two-sample t-test.csv")
plot(mydata[,1], col = mypal, pch = 19)
```


If you wish to use Cancer Research Uk or Cambridge University branding, you can use the colours defined in the crukCIMisc package. This package includes a function, CRUKcol which can be used to generate the Cancer Research UK blue or pink colours.

```
library(crukCIMisc)
plot(mydata[,1], col=CRUKcol("Blue"),pch=16)
points(mydata[,2],col=CRUKcol("Pink"),pch=16)
```


Plotting characters and their values

You may have noticed that in some of the example scatter plots above not only the colour of the points has been changing, but also the shape that is being drawn. The default is an open circle, but R has a variety of alternative shapes, which are listed in the diagram below.

\diamond	\oplus	-	-	∇
5	10	15	20	25
\times	$\stackrel{\rightharpoonup}{*}$	$\boxed{\square}$	-	\triangle
4	9	14	19	24
+	*	\otimes	*	\diamond
3	8	13	18	23
\triangle	®	田	-	\square
2	7	12	17	22
\bigcirc	∇	\$	\bullet	\bigcirc
1	6	11	16	21

We can specify a new plotting character using the pch argument. For example pch=16 uses filled rather than open circles.

```
mydata <- read.csv("PrimerExamples/Paired two-sample t-test.csv")
```

plot(mydata[,1],pch=16)

Rather than being a single value, pch can be a vector of values that will be cycled through as each data point is plotted.

```
plot(mydata[,1],pch=1:nrow(mydata))
```


Adding lines, points to a plot

Once a plot has been created, we have various options to modify it. Firstly we can add vertical and horzontal lines to the plot using abline (read as $a b$ line) with the v and h arguments respectively. Here we construct a scatter plot as before, and

```
plot(mydata[,1],pch=1:nrow(mydata))
abline(h=1300)
abline(v=10)
```


The appearance of the line can be modified, for example to be coloured differently.

```
plot(mydata[,1],pch=1:nrow(mydata))
abline(h=1000,col="steelblue")
abline(v=5,col="orange")
```


A dotted line be drawn by specifying lty=2 (line type) and the width can be changed using the lwd(line width) argument.

```
plot(mydata[,1],pch=1:nrow(mydata))
abline(h=1000, col="steelblue", lty=2, lwd=5)
abline(v=5,col="orange",lty=3,lwd=10)
```


The grid function can be used to draw horizontal and vertical lines at regular intervals in the background.

```
plot(mydata[,1],pch=1:nrow(mydata))
```

grid()

The colour of the grid lines can be changed in the usual way.

Another use for the abline function is to specify an intercept and coefficient for the line (the a and b in the abline name). For instance, if we wanted the line corresponding to equality of two vectors, $y=x$, we can say.

```
mydata <- read.csv("PrimerExamples/Paired two-sample t-test.csv")
plot(mydata[,1],mydata[,2])
abline(a=0,b=1)
```


The points function can be used to add points to an existing plot. You need to specify vectors of x and y positions at which the points will be plotted.

```
data <- read.delim("PrimerExamples/Linear regression.txt")
plot(data[,1],data[,2])
points(data[,1],data[,3])
```


We can modify the colours in which points are plotted.

Or change the plotting characters

```
plot(data[,1],data[,2],col="steelblue",pch=16)
points(data[,1],data[,3],col="orange",pch=17)
```


The arrows function can be used to connect pairs of points on an existing plot. We have to supply start ane end x and y coordinates. In the example below, we draw and arrow from $(2,1.5)$ to (10,4).

```
plot(data[,2])
arrows(2, 1.5, 10, 4)
```


Customisations of the arrow are possible and multiple arrows can be drawn by supplying the coordinates as vectors. See the help page for more information.

?arrows

This function may not seem very useful initially, but it can be used as a means of drawing error bars on a plot.

```
randMat <- matrix(rnorm(100),ncol=10)
means <- colMeans(randMat)
plot(means,ylim=c(-2,2))
err <- apply(randMat, 1, sd)
arrows(1:10, means-err,1:10,means+err,code=3,angle=90)
```


So far in this section, we have shown how to modify scatter plots using lines, points etc. However, the same modifications can be applied to other types of plot too.

```
par(mfrow = c(1,2))
# Boxplot
boxplot(randMat)
abline(h = 0,col="red")
points(1:10, y = seq(-3,3,length.out = 10),pch=16,col="steelblue")
text(1:10, y= seq(3,-3,length.out = 10),labels = LETTERS[1:10],col="orange")
# Barplot
barplot(colMeans(randMat),ylim=c(-3,3))
abline(h = 0,col="red")
points(1:10, seq(-0.2, 0.6, length.out=10),col="steelblue",pch=16)
text(1:10, y= seq(0.6,-0.2,length.out = 10),labels = LETTERS[1:10],col="orange")
```


Adding a legend

The legend function can be used to add a legend to an existing plot. In the following example, we generate a random matrix and plot the second, third and fourth columns against the first. We use red circles, blue squares and orange triangles respectively to represent these variables and we will use the legend to indicate this mapping.

The names to be used in the legend are defined by the legend argument, while col and pch can be used to define the relevant colours and plotting characters in the same way as they are in the plot itself. For fine control over the position of the legend we can specify the x and y coordinates of where the legend will appear. However this can be tedious if you change the size of the plot, so the strings topleft, topright, bottomleft and bottomright are conveniant shortcuts for the most common locations.

```
randMat <- matrix(rnorm(100),ncol=10)
plot(randMat[,1],randMat[,2],ylim=c(-3,4),pch=16,col="red",xlab="Column1",ylab="y")
points(randMat[,1],randMat[,3], pch=15,col="steelblue")
points(randMat[,1],randMat[,4], pch=17,col="chocolate3")
legend(x = "topleft", legend=c("Column 2", "Column 3","Column 4"), col = c("red", "steelblue", "chocola
```


A legend can be added to all types of plots; as shown here for a boxplot. Unlike the previous example, here we're not interested in the shape off the plotting character and only wanted to indicte the colour in the legend. To achieve this we need to use fill argument instead of the combination of pch \& col we used before.

```
boxplot(randMat[,1:4],col=c("bisque1", "red", "steelblue","chocolate3"))
legend("bottomright", legend=c("Column 1", "Column 2", "Column 3","Column 4"), fill = c("bisque1","red"
```


Adding text to plots

A common task is to add labels to points in a plot. This can be achieved using the function text (), which adds text to an existing plot. In the example below we first plot 10 points. These same values are used in the text command to position the labels. The argument pos $=4$ indicates we want to text to be placed to
the right of the specified coordinates; if we didn't specify this the label would cover the points. The in this example the labels are the first 10 letters of the alphabet, but the could equally be longer words such as the names of samples.

```
plot(data[,1], data[,2], col="steelblue", pch=16)
text(x = data[,1], y = data[,2], pos = 4, labels=LETTERS[1:10])
```


Sometimes, we want to add annotations to the plot outside of the plotting window. This can be achieved by using the mtext function. We use the paste function to construct our labels and have to specify the x coordinates at which to put the text. The line argument specifies how far from the border of the plot to plot to write the text.

```
data(mtcars)
boxplot(mtcars$mpg~mtcars$cyl)
table(mtcars$cyl)
##
## 4 6 8
## 11 7 14
labs <- paste("n=", table(mtcars$cyl))
labs
## [1] "n= 11" "n= 7" "n= 14"
mtext(side=3, at=1:3,text=labs,line=2,col="blue",font=3)
```

$$
n=11 \quad n=7 \quad n=14
$$

In the above example, we set the x coordinates to be $1,2,3$ because we had three groups in the boxplot. Unfortunately, the barplot function does not place the centers of the bars in such a uniform manner.

To get around this, we can assign the result of barplot to a variable. This variable then contains the midpoints of each bar, which we can then use as input for the mtext function.

```
bp <- barplot(1:10)
bp
```

```
## [,1]
## [1,] 0.7
## [2,] 1.9
## [3,] 3.1
## [4,] 4.3
## [5,] 5.5
## [6,] 6.7
## [7,] 7.9
## [8,] 9.1
## [9,] 10.3
## [10,] 11.5
```

```
box()
mtext(side=1, at=bp,text=LETTERS[1:10])
```


The par function

The par function can be used to alter various graphical parameters. These parameters will be applied to the next plot to be created. We will now go through some of the most-popular uses of the par function. For a comprehensive list of parameters that can be changed, see the help page for par; ?par.

Adding extra space around a plot

Taking the mtcars dataset as an example, we can sometimes create a plot where they is not adequate space to fit all the labels. Here we make a barplot of the mpg variable and modify the axes. However, we see there is not enough room to fit the labels

```
data(mtcars)
barplot(mtcars$mpg,names.arg = rownames(mtcars),las=2)
```


We can use the par function before the plot is created to give us more room. The variable we need to change is mar which should be a vector of length 4 ; referring to the amount of space 1) below 2) left 3) above 4) to the right. The default setting is $c(1,1,1,1)$ which gives one line of space at each edge of the plot. In this example, we allow more lines below the plot.

```
data(mtcars)
par(mar=c(8,2,1,1))
barplot(mtcars$mpg,names.arg = rownames(mtcars),las=2)
```


Combining multiple plots

The mfrow variable can be set by the par function, which will change the layout of future plots. It requires a vector of length 2 corresponding to how many rows and columns the plotting device is divided into. The following arranges the plotting window into 3 rows and 1 column

```
data(mtcars)
par(mfrow=c(3,1))
hist(mtcars$wt)
hist(mtcars$mpg)
hist(mtcars$disp)
```

Histogram of mtcars\$wt

Histogram of mtcars\$mpg

Histogram of mtcars\$disp

Similarly, we could have 1 row and 3 columns;

```
data(mtcars)
par(mfrow=c(1,3))
hist(mtcars$wt)
hist(mtcars$mpg)
hist(mtcars$disp)
```


We are not restricted to having the same type of plot, or even the same dataset plotted in each cell.

```
data(mtcars)
randMat <- matrix(rnorm(100),ncol=10)
par(mfrow=c(1,3))
hist(mtcars$wt,main="Histogram of wt")
barplot(mtcars$mpg, main="barplot of miles per gallon")
boxplot(randMat, main="boxplot of random matrix")
```


Statistical Analysis

Appendix

Vectors

Vectors are the fundamental data type in R and are composed of an ordered group of single items of data. There are several ways to construct a vector, but perhaps the simplest and most commonly used is c() function. This may seem like an unintuative name (you'll get used to some of R's idosyncracies if you use it long enough), but it stands for concatenate as what the function is actually doing is sticking together a number of smaller objects.
numericVector <- c(1, 2, 3, 4)

When you create a variable with a single value, you are still creating a vector - it just has a length of one. This is why we can describe vectors as the fundamental data type in R, there is nothing smaller to break them down into.

```
shortVariable <- 1
shortVariable
```

\#\# [1] 1

```
shortVariable[1]
```

\#\# [1] 1

Vectors don't have to contain numbers, they work equally well for storing character data.

```
characterVector <- c("one", "two", "three", "four")
```

One important thing to note is the all the values in a vector must be of the same type. For instance you cannot have numeric and character data in the same vector. However R won't neccessarily report and error if you try to do this, as the example below shows:

```
mixedVector <- c(1, 2, "three", "four")
mixedVector
```

```
## [1] "1" "2" "three" "four"
```

```
## [1] "1" "2" "three" "four"
```

You can see in the output that all four values have quotation marks around them. This indicates that R has automatically converted the numeric value to character strings. If you wanted to keep the distinct data types you may wish to use a data frame, which we'll discuss later.

Matrices

Sometimes it's useful to store values in two dimensions (rows and columns) rather than in a linear fashion as we can with vectors. For example if you have an experiment with several samples and multiple time points it may make sense to store data in a format where the rows are samples and columns represent times.

In order to achieve this we can use a matrix object. The code below generates two small matrices, each containing the number 1 to 16 .

```
matrix1 <- matrix(1:16, nrow = 4)
matrix1
```

\#\#	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
\#\# [1,]	1	5	9	13
\#\# [2,]	2	6	10	14
\#\# [3,]	3	7	11	15
\#\# [4,]	4	8	12	16

matrix2 <- matrix(1:16, nrow = 2)
matrix2

\#\#	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$	$[, 7]$	$[, 8]$
\#\# [1,]	1	3	5	7	9	11	13	15
\#\# [2,]	2	4	6	8	10	12	14	16

The nrow argument allows use to specify the dimensions of the matrix we create. Similarly we can specify the argument byrow to change the order in which the values are placed in the matrix. The default value of this agument is FALSE, specifying that the matrix is filled going down the columns. In the example below we change this behaviour and fill and the values are placed going across columns instead.

```
matrix(1:16, nrow = 2, byrow = TRUE)
```

\#\#	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$	$[, 7]$	$[, 8]$
\#\# [1,]	1	2	3	4	5	6	7	8
\#\# [2,]	9	10	11	12	13	14	15	16

As with vectors, matrices can only contain a single type of data; you can't mix numbers and characters in the same matrix.

Data Frames

If we want to store multiple types of data in a single object with the row and column structure you might expect from a spreadsheet or printed table, we need to use a new object type: the data frame. In the example below we'll create a data frame using two of the vectors created in the previous section.

```
charNumFrame <- data.frame(numericVector, characterVector)
charNumFrame
```

\#\#	numericVector	characterVector
\#\#	1	1
\#\# 2	2	one
\#\# 3	3	two
\#\# 4	4	three
		four

Lists

Although it's easy to think of vectors as 'lists' of values, within R a list is a distinct type of object. Lists are used when you want to group together disparate types of information. For example, one could store several vectors of numbers, but they need not be the same length, something that a matrix or data frame could not cope with. Alternatively, a list could contain four elements that are a vector, a matrix, a data frame and another list respectively.

```
list1 <- list(vec1 = 1:2, vec2 = 3:5, vec3 = 6:9, vec4 = 10:13)
list2 <- list(vec = 1:10, mat = matrix(1:10, nrow = 2), dat = data.frame(a = 1:5, b = 6:10), lis = list
```


Subsetting

Sometimes you only want to use a subset of the data stored in an object; perhaps you only want the first five items from a long vector, or you're only interested in the second column from a data frame. To extract a portion of an object we need to use R subsetting functionality, which is denoted by square brackets [].

```
characterVector[2:3]
## [1] "two" "three"
matrix1[3:4, ]
\begin{tabular}{lrrrr} 
\#\# & {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} \\
\#\# [1,] & 3 & 7 & 11 & 15 \\
\#\# [2,] & 4 & 8 & 12 & 16
\end{tabular}
```

In the example above the first line extracts the 2 nd and 3rd entries from a vector, while the second line selects rows 3 and 4 from a matrix. If we wanted to obtain the same rows, but only for the first column we'd need to specify that too:

```
matrix1[3:4, 1]
```

\#\# [1] 34

If you're really paying attention to the example above you'll notice that when we only select one column the format the data is printed to screen in changes. The entries are now next to each other rather than on top of one another. This is because when you only select one column R automatically gives you back a vector rather than a matrix (it assumes you don't need the second dimension). This behaviour can sometimes be useful and sometimes frustrating, but if you want to ensure it doesn't happen you can use the drop = FALSE argument seen below.

```
matrix1[3:4, 1, drop=FALSE]
```

```
## [,1]
## [1,] 3
## [2,] 4
```

Extracting subsets from a list is slightly more subtle than for other object types. Where as before we used a single set of square brackets [], lists make use of both this and a double set of brackets [[]].

When using a single set of brackets on a list, R will return another (probably shorter) list. In the code below we ask for a list with only the first and third elements (the vector and data frame entries) from the example made earlier.

```
list2[c(1,3)]
```

```
## $vec
## [1] 11 2 2 3 [llllllllll
##
## $dat
## a b
## 1 1 6
## 2 2 7
## 3 3 8
## 4 4 9
## 5 5 10
```

This makes sense if you're interested in getting a few entries but can be a little unintuative if you're only interested in a single element. Asking for a single entry in the manner shown above will still return a list. If you wish to reference an element directly you use the double braket notation. This difference is demonstrated in the example below, where we use the function class() to ask R what type of object we've got.

```
class( list1[1] )
```

```
## [1] "list"
```

```
class( list1[[1]] )
```

\#\# [1] "integer"

Functions

Useful functions to know

R version details

The version of R and the packages used in this document are given below.

```
sessionInfo()
## R version 3.1.0 (2014-04-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
##
## locale:
## [1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB.UTF-8 LC_COLLATE=en_GB.UTF-8
## [5] LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8
## [7] LC_PAPER=en_GB.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] crukCIMisc_0.2 RColorBrewer_1.0-5 foreign_0.8-61
## [4] gdata_2.13.3
##
## loaded via a namespace (and not attached):
## [1] digest_0.6.4 drc_2.3-96 evaluate_0.5.5 formatR_0.10
## [5] gtools_3.4.0 htmltools_0.2.4 knitr_1.6 plyr_1.8.1
## [9] Rcpp_0.11.1 reshape2_1.4 rmarkdown_0.2.50 splines_3.1.0
## [13] stringr_0.6.2 survival_2.37-7 tools_3.1.0 yaml_2.1.12
```

