
Exercises on Graphics and Data Manipulation in R

Mark Dunning, Mike Smith and Sarah Vowler ∗

Last Document revision: April 8, 2015

Contents

1 Plotting basics 1
1.1 Weather Data . 2
1.2 Life Expectancy data . 3
1.3 Survival Data . 4

2 Plot options 5
2.1 Life expectancy data . 6
2.2 Weather data . 8

3 Data Manipulation - Worked Examples 10
3.1 Calculating new variables . 10
3.2 Combining data from multiple files . 14
3.3 Subsetting the patients . 15
3.4 Retrieving the data for a particular gene . 15
3.5 Associating gene expression with clinical variables . 16

Introduction

The data that you need for this practical are available at

https://sharepoint.cri.camres.org/sites/bioinformatics/Public/GraphicsAndDataManipulation/CourseData.zip

Please download this zip file and extract to your computer. You should then change your working
directory in RStudio to point to the directory that you have just created. Session → Change Working
directory.

To accompany this course, we have created a small number of utility and plotting functions and bundled
them as a R package. You can install the latest version of this package by the following commands in

∗Acknowledgements: Thanks to Fran Richards for supplying example data and figures for the practical

1

Exercises on Graphics and Data Manipulation in R 2

R:

install.packages("devtools")

library(devtools)

install_github(repo = "crukCIMisc", username = "markdunning")

library(crukCIMisc)

At the end of some subsections you may find some Optional Extensions. You can attempt these if you
have time in the practical sessions, or on your own after the course.

1 Plotting basics

This section will provide you with practice on reading several different file formats into R

1.1 Weather Data

The dataset introduced in the slides concerns weather conditions in New York City from the summer of
1973. 1.

Exercise: Read the ozone data into your Rstudio. Practice using the ’file.choose’ function to locate
the file on your hard drive

myfile <- file.choose()

ozone <- read.csv(myfile)

Exercise: Verify that the dimensions and first few lines are as we expect. HINT: use the dim and head

functions.

Exercise: Make sure you know how to extract the Wind column from the data frame by i) selecting
using the column number ii) selecting using the column name. Verify that you get the same answer.

Exercise: Make a scatter plot with index on the x-axis and Wind speed on the y-axis

Exercise: Make a scatter plot to compare Wind speed and temperature

The plot function in R is flexible and will try to guess the most appropriate type of plot based on the
data that you give it. If given a data frame with numeric data, it will make pairwise scatter plots of all
variables. In our case, this will allow us to compare all combinations of variables on the same plot.

Exercise: Say we want to compare Ozone, Solar Radiation, Wind and Temperature variables only.
Create a new data frame that consists of only these columns and save as a variable.

Exercise: Use the plot function on your new data frame. It should look something like the following;

1More details are available (http://faculty.washington.edu/heagerty/Books/Biostatistics/DATA/ozonedoc.txt

Exercises on Graphics and Data Manipulation in R 3

[Optional Extensions]

The cor function can be used to calculate correlations between variables. If given a data frame, it will
calculate all pairwise correlations.

cor(ozone[,1:4],use="c")

We can also test the significance of the association between variables using cor.test

cor.test(ozone[,1],ozone[,4])

The function lm can be used to fit a linear relationship between two variables. The procedure for fitting
is as follows.

mod <- lm(ozone[,4] ~ ozone[,1])

mod

1.2 Life Expectancy data

Exercise: Data describing the life expectancy of males and females born in particular years are given
in the file ’UKLifeExpectancy.tsv’ 2. What function do you think you would use to read these data?
Using your chosen function, read these data into RStudio and check the dimensions and first few lines
of the data frame.

2These data come from a Guardian blog of 8th June 2011 http://www.theguardian.com/news/datablog/2011/jun/08/life-
expectancy-uk-data-health

Exercises on Graphics and Data Manipulation in R 4

HINT: You should get 243 rows and 4 columns.

Exercise: Plot how the Male life expectancy rate changes over the years (given in the Age column)

Exercise: Plot the relationship between Male and Female Life Expectancy as a scatter plot. e.g. Male
on the x axis and Female on the y axis.

Exercise: Visualise the Male life expectancy as a barplot. Which plot (scatter or barplot) displays the
data in a better way?

barplot(life$Male.babies)

Exercise: Similarly, the following is a valid plot in R. Comment on whether the trends in the data are
better displayed as a barplot or scatter plot. N.B. the t function here is transpose and used to reshape
the data in the correct dimensions for the barplot.

barplot(as.matrix(t(life[,c(2,3)])),beside=TRUE)

[Optional Extensions]

Later in the course we will describe how lines, points and other annotations can be added to a plot.
One of the functions for doing this is abline which can draw a straight line given slope and intercept
arguments.

Exercise: Re-plot the relationship between male and female life expectancy and plot a straight line
with intercept 0 and gradient 1.

1.3 Survival Data

For this section, you will need to use a couple of functions in the ‘crukCIMisc‘ package.

library(crukCIMisc)

Exercise: Read the example file data/Two groups.txt into R

svdata <- read.delim("data/Two groups.txt")

head(svdata)

Days.elapsed Control Treated

1 46 1 NA

2 46 0 NA

3 64 0 NA

4 78 1 NA

5 124 1 NA

6 130 0 NA

You should see that the Time variable required for survival analysis can be taken from the first column
of the file, and that the Group and Event vectors are encoded in the second and third columns.

Exercise: Use the extractSurvivalEvent function to get the Event vector from the second and third

Exercises on Graphics and Data Manipulation in R 5

columns of the data matrix. There is only one argument to this function; a data matrix that contains
columns that we want to extract event information from.

Event <- extractSurvivalEvent(svdata[,2:3])

Exercise: Use the extractSurvivalGroups function to get the Group vector from the data matrix

Group <- extractSurvivalGroups(svdata[,2:3])

Exercise: Now save the first column of the data matrix as the Time vector and proceed to the survival
analysis with the survival package

library(survival)

Time <- svdata[,1]

SurvData <- Surv(Time, Event)

plot(survfit(SurvData ~ Group))

[Optional Extensions]

Exercise: Repeat the steps for the example dataset data/Three groups.txt. You will need to decide
what column contains the Time data, and which columns include Event and Group information.

2 Plot options

In this part of the practical we will revisit some of the same datasets from the previous section, but
introduce different ways in which we can customise and extend the basic plots.

http://cran.fhcrc.org/web/packages/survival/index.html

Exercises on Graphics and Data Manipulation in R 6

2.1 Life expectancy data

Exercise: Read the UK life expectancy data and plot the female life expectancy on the y axis against
year on the x axis. Then overlay the Male life expectancy data using the points function. Choose
different colours for male and female.

Exercise: Add a legend in the top-left corner using the legend function.

Exercise: We decide that we are only interested in the 20th century (i.e. years 1900 to 2000). Create a
new plot that only displays years in this range by specifying an appropriate value for the xlim argument.

The easiest way to combine several plots on the same page is to use the par function. par is used to
pre-specify many plotting options 3 by a series of named arguments, the most-common of which are
the plot layout and margins. The argument to change the layout is mfrow which has to be a vector
in the form c(rows, columns) to form a plot layout with the specified number of rows and columns.
e.g. par(mfrow = c(rows,columns)). The order in which plots are created will fill up the page in
the required layout configuration.

Exercise: Try and replicate the plot shown below. You will need to use the par function to set the
layout of the plot to have one row and two columns. Also take care to make sure that you have the
same y-axis in both plots.

The life expectancy data also contains annotations about years in the 20th century when the two World
Wars occurred and would presumably have an influence on the data.

3see ?par for details

Exercises on Graphics and Data Manipulation in R 7

Age Male.babies Female.babies Annotations

74 1914 51.29 55.13 WW1 starts

78 1918 44.64 49.91 WW1 ends

99 1939 61.37 65.60 WW2 starts

105 1945 62.73 67.95 WW2 ends

The abline can be used to add horizontal and vertical lines to an existing plot. As always, you can
find out more information about the function by doing ?abline. It can take slope and intercept values,
plot the result of a linear model fit (outside the scope of today), or plot horizontal and vertical lines
by setting the h and v arguments. The appearance of the line can be modified by the lty and lwd

arguments. For instance, specifying lty = 2 creates a dotted line.

Exercise: Use abline to add vertical lines to indicate periods in which the two world wars took place

The text function (?text) is another function that can modify an existing plot. In a similar manner
to points, it has arguments to specify the x and y coordinates at which text will be written. It also
needs a labels argument which can be used to specify the text to be written to the plot.

Exercise: Add text annotations to indicate when World War I and World War II started

Exercises on Graphics and Data Manipulation in R 8

[Optional Extensions]

Other arguments to the text function include the option to rotate the text (srt) and use a different
font (font).

Exercise: See if you can rotate the text by 45 degrees and use a bold font

The mtext function allows text to be written in margins around the plot, rather than inside.

Exercise: Use the mtext function to write the text labels above the plot.

2.2 Weather data

Exercise: Read the Weather data back into R. As seen in the slides, use the formula annotation to
produce a boxplot with the temperature on the y axis, and month on the x axis.

Exercise: Repeat the plot with a different colour for each box. First create a vector with five valid
colour names (i.e. the name appears in the output of colours()) and use this as the col argument to
plot.

Exercise: Now, load the RColorBrewer package and see what palettes are available using display.brewer.all().
Use the brewer.pal function to create a palette of length 5 from one of the available options and use
this palette to colour the boxplot.

We will now re-visit the scatter plot of Ozone level and Temperature

plot(ozone$Temp,ozone$Ozone,pch=16)

Exercises on Graphics and Data Manipulation in R 9

Lets consider the steps required to colour each point according to the month that the observations were
made. Our goal is to produce a vector of length ??, where each item in the vector is the colour to be
used to plot the corresponding point.

Step 1: Using the table function on the Month variable, you will see how many observations are present
for each month

table(ozone$Month)

##

5 6 7 8 9

31 30 31 31 30

For simplicity, lets say we want to use "red", "orange", "yellow", "green" and "blue" to represent
the colours for each month.

Exercise: Create a vector of the string "red" repeated 31 times and assign it to a variable. These will
be the colours that data points for the first month will be plotted in. HINT Use the rep for this task.

Exercise: Repeat the same exercise to create colour vectors of the appropriate length for all the other
months

Exercise: Now combine all your vectors together and use this as the col argument when creating the
scatter plot. Check that the length of your combined vector is ??. You should get the following plot;

Exercises on Graphics and Data Manipulation in R 10

[Optional Extensions]

Exercise: Create a legend in the top-left corner of the plot

Exercise: Rather than using numbers to represent month, use abbreviated month names stored in the
built-in month.abb vector

Exercise: Check out the help page for rep (?rep), and in particular the times argument. See if you
can construct the vector of colours in a more efficient manner.

3 Data Manipulation - Worked Examples

The following examples to demonstrate data manipulation are a bit more involved and are presented
as walkthrough. Please feel free to type the code as it appears, but make sure you understand what is
going on at each stage.

3.1 Calculating new variables

Now lets return to the Life Expectancy data. Previously we visualised the life expectancy recorded for
each year to look for trends. However, we will now create a new variable that will allow us to split the
data for the 20th century by decade.

Exercise: Read the Life Expectancy data into R

Exercises on Graphics and Data Manipulation in R 11

life <- read.delim("data/UKLifeExpectancy.tsv")

You should now be familiar with subsetting a data frame using numerical indices and the [] notation
(i.e life[1:10,1] to get the first 10 rows from the first column of the life data frame. But what if
you didn’t know in advance what rows you wanted to extract? We can compare numeric values using
>, <, == and return a logical vector. This logical vector can then be used to subset a data frame. In
our particular example, we want observations where the Age variable is between 1900 and 2001.

Exercise: Create a logical vector that returns TRUE or FALSE depending on whether Age variable in a
given row is after 1900

vec1 <- life$Age > 1900

Exercise: Create a second logical vector that returns TRUE or FALSE depending on whether Age variable
in a given row is before 2001. Now use the & operator to combine this vector with the vector you
calculated in the previous exercise

vec2 <- life$Age < 2001

vec1 & vec2

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[15] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[29] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[43] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[57] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[71] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[85] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[99] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[113] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[127] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[141] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[155] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[183] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[197] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[211] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[225] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[239] FALSE FALSE FALSE FALSE FALSE

Exercise: Now subset the life expectancy data using the combined vector. You should get a data
frame with 100 rows.

centdata <- life[vec1 & vec2,]

dim(centdata)

[1] 100 4

Exercises on Graphics and Data Manipulation in R 12

Note that we didn’t have to store the logical vectors in vec1 and vec2 and could have done the
subsetting in one go; the following is also valid. However, when you’re learning R, you might find it
useful to bring tasks down into subtasks in this fashion.

centdata <- life[life$Age > 1900 & life$Age < 2001,]

dim(centdata)

[1] 100 4

Here we will use the fact that each year is represented by four digits (we will check this first), and the
third digit will represent the number of the decade.

Exercise: Create a new variable that captures the decade and use the table and unique functions to
check that it is correct.

nchar(centdata$Age)

[1] 4

[43] 4

[85] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

decade <- substr(centdata$Age, 3, 3)

table(decade)

decade

0 1 2 3 4 5 6 7 8 9

10 10 10 10 10 10 10 10 10 10

unique(decade)

[1] "0" "1" "2" "3" "4" "5" "6" "7" "8" "9"

We now have a vector which is the same length as the number of observations in the data frame and
can be used to describe different groups in the data. Thus, we can use the ∼ notation to create a
boxplot with life expectancy on the y-axis, and decade on the x-axis.

Exercise: Create a boxplot that shows the increase in Female life expectancy for each decade

boxplot(centdata$Female.babies ~ decade,col="mistyrose")

Boxes to show the increase in Male life expectancy over the same period can be added in the following
manner.

boxplot(centdata$Female.babies ~ decade,col="mistyrose",xlab="Decade",

ylab="Life Expectancy")

boxplot(centdata$Male.babies ~ decade,col="steelblue",add=TRUE)

legend("topleft", fill=c("mistyrose", "steelblue"),legend=c("Female","Male"))

Exercises on Graphics and Data Manipulation in R 13

[Optional Extensions]

Exercise: Specify the axes=FALSE option to the boxplot function to supress the plotting of the axis.
Then use the axis function to create an axis with labels 00s, 10s, 20s, 30s etc rather than 0,1,2,...

boxplot(centdata$Female.babies ~ decade,col="mistyrose",xlab="Decade",

ylab="Life Expectancy",axes=FALSE)

boxplot(centdata$Male.babies ~ decade,col="steelblue",add=TRUE,axes=FALSE)

declabel <- unique(paste0(decade, "0s"))

axis(side=1, at = 1:10,labels = declabel,las=2)

axis(2)

box()

legend("topleft", fill=c("mistyrose", "steelblue"),legend=c("Female","Male"))

Exercises on Graphics and Data Manipulation in R 14

3.2 Combining data from multiple files

In this section we will consider the published data from the NKI breast cancer series. This is a series of
295 breast cancer patients that have been used to identify and validate various gene expression signa-
tures. Typically, such datasets are spread over various files which give sample and feature annotation,
and the actual gene expression values themselves.

Exercise: Read the files for the dataset in the following manner

emat <- read.delim("data/NKI295.exprs.txt",stringsAsFactors=FALSE)

fmat <- read.delim("data/NKI295.fdata.txt")

pmat <- read.delim("data/NKI295.pdata.txt")

Exercise: Check the dimensions of the expression matrix and sample annotation. What do each row
and column in the two matrices correspond to?

dim(emat)

[1] 24481 296

dim(pmat)

[1] 295 21

Exercise: Use the == operator to verify that each column in the expression matrix (excluding the first
column) corresponds to each row in the sample information matrix

Exercises on Graphics and Data Manipulation in R 15

colnames(emat)[-1] == pmat$sampleNames

Exercise: Similarly, verify that each row in the feature information corresponds to the first column of
the expression matrix. You may wish to use the all to check that you get TRUE for every position

all(emat[,1] == fmat[,1])

[1] TRUE

3.3 Subsetting the patients

A common task is to create a subset of the data relating to patients that satisfy various clinical
parameters. To achieve this, we rely on the fact that the sample identifiers are the column names for
the expression matrix and also appear as a column in the sample information matrix.

Exercise: Find the sample names of the ER negative patients. You will first need to identify which
column in the phenotypic data holds the ER status of each patient.

which(pmat$ER == "Negative")

[1] 3 4 7 13 19 22 28 31 32 33 35 38 50 51 55 56 61 63 66 68 71

[22] 76 82 90 92 94 96 99 101 110 112 117 124 127 128 133 135 137 139 143 144 145

[43] 148 151 153 160 167 170 171 172 178 206 209 222 224 228 230 231 233 236 239 242 248

[64] 262 267 273 289 291 293

erNegSamples <- pmat$sampleNames[which(pmat$ER == "Negative")]

Exercise: Now match these sample names to the columns in the expression matrix to get a vector
of column indices. Since each sample should be unique, it is Ok to use the match function. Use the
column indices to create a subset of the expression matrix that describes only ER negative samples.

erNegMatix <- emat[,match(erNegSamples, colnames(emat))]

If we wish, we can write this data matrix to a file.

Exercise: Export the data for the ER negative patients as a comma-separated file

write.csv(erNegMatix, file="erNegativeExpression.csv")

3.4 Retrieving the data for a particular gene

Various functions can be used to see if a defined string (or set of strings) appears in a larger vector.

Exercise: Find the entry in the gene annotation matrix that corresponds to the gene symbol ”ESR1”.
How would you do this using grep, match, ==?

grep("ESR1", fmat$symbol)

[1] 18889

Exercises on Graphics and Data Manipulation in R 16

match("ESR1", fmat$symbol)

[1] 18889

which(fmat$symbol =="ESR1")

[1] 18889

which(fmat$symbol %in% "ESR1")

[1] 18889

Exercise: What is the probe ID for the ESR1 gene?

Exercise: Match the probe ID that you just found to relevant row in the expression matrix. Remember
that probe IDs are in the first column of the expression matrix.

match("18904", emat[,1])

[1] 18889

erVals <- emat[18889,-1]

3.5 Associating gene expression with clinical variables

We can now associate the expression of a particular gene with various clinical factors.

Exercise: Make a boxplot of ESR1 expression against ER status

boxplot(as.numeric(erVals) ~ pmat$ER)

Exercises on Graphics and Data Manipulation in R 17

We can test the signficance of the association using the t.test function.

t.test(as.numeric(erVals) ~ pmat$ER)

##

Welch Two Sample t-test

##

data: as.numeric(erVals) by pmat$ER

t = -36.6006, df = 146.102, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-4.124197 -3.701624

sample estimates:

mean in group Negative mean in group Positive

-3.86215423 0.05075594

[Optional Extensions]

The pam50 gene signature has been widely-used to classify breast cancer into different subtypes. Here
we show to retrieve the gene expression values relating to these genes 4.

pam50Genes <- read.csv("data/pam50Genes.csv")

head(pam50Genes)

probe probe.centroids EntrezGene.ID

1 ACTR3B ACTR3B 57180

4this table was extracted from the genefu Bioconductor package

http://bioconductor.org/packages/release/bioc/html/genefu.html

Exercises on Graphics and Data Manipulation in R 18

2 ANLN ANLN 54443

3 BAG1 BAG1 573

4 BCL2 BCL2 596

5 BIRC5 BIRC5 332

6 BLVRA BLVRA 644

First we match the gene symbols from our gene list to the gene annotation table for our dataset

match(pam50Genes[,1], fmat$symbol)

[1] 6202 22332 5212 22930 21356 23482 14961 16562 22112 22111 NA 1514 15355 18113

[15] 16268 7054 6409 18889 5656 21705 6600 23531 10457 7915 14823 NA 22114 21288

[29] 21293 19100 649 14097 12212 1146 16716 13269 1339 NA 23010 10228 615 1679

[43] 4144 17607 285 5044 509 20563 10189 8950

However, we notice that some genes are not found in our data. We can use the na.omit function to
exclude these NA values from the index vector.

pam50Anno <- fmat[na.omit(match(pam50Genes[,1], fmat$symbol)),]

pam50Probes <- fmat[na.omit(match(pam50Genes[,1], fmat$symbol)),1]

We can then just match up the probes to the first column of the expression matrix and subset. For
completeness, we can assign the rownames based on the gene name

pam50Data <- emat[match(pam50Probes,emat[,1]),-1]

rownames(pam50Data) <- pam50Anno$symbol

boxplot(as.numeric(pam50Data["ERBB2",]) ~ pmat$Fan.nearest.centroid)

Exercises on Graphics and Data Manipulation in R 19

	1 Plotting basics
	1.1 Weather Data
	1.2 Life Expectancy data
	1.3 Survival Data

	2 Plot options
	2.1 Life expectancy data
	2.2 Weather data

	3 Data Manipulation - Worked Examples
	3.1 Calculating new variables
	3.2 Combining data from multiple files
	3.3 Subsetting the patients
	3.4 Retrieving the data for a particular gene
	3.5 Associating gene expression with clinical variables

