

INTRODUCTION TO EXPERIMENTAL DESIGN AT CRUK-CI

CHANDRA CHILAMAKURI ABBI EDWARDS KAMAL KISHORE ASH SAWLE RORY STARK

31 OCTOBER 2022

tinyurl.com/cruk-edesign

Agenda

WHY PERFORM EXPERIMENTS? WHAT MAKES FOR A WELL DESIGNED EXPERIMENT? KEY ASPECTS OF EXPERIMENTAL DESIGN

- Experimental variables
- Power: variance and replicates
- Bias: confounding factors, randomisation, and controls

2

DESIGN PARAMETERS

EXPERIMENTAL DESIGN PROCESS AT CRUK-CI

BREAKOUT SESSIONS: PRACTICALS

BECAUSE MY SUPERVISOR TOLD ME TO

BECAUSE THEY DID IT IN THIS OTHER PAPER

BECAUSE WE GOT A COOL NEW PIECE OF TECH AND I WANT TO TRY IT OUT

3

BECAUSE I DON'T KNOW WHAT ELSE TO DO

TO GET EVIDENCE (HOPEFULLY) SUPPORTING A HYPOTHESIS

Reproducible Research

47 of 53 high-profile cancer studies were not reproducible!

nature International weekly journal of science							
Home	News & Comment	Research	Careers & Jobs	Current Issue	Archive	Audio & Video	F
Archive Volume 483 Issue 7391 Comment Article							

```
NATURE | COMMENT
```

Drug development: Raise standards for preclinical cancer research

5

C. Glenn Begley & Lee M. Ellis

Affiliations | Corresponding author

Nature 483, 531–533 (29 March 2012) | doi:10.1038/483531a Published online 28 March 2012

Need for Good Design

Consequences of Poor Experimental Design...

- **Cost** of experimentation. We have a responsibility to CRUK donors!
- Limited & Precious material, esp. clinical samples.
- Immortalization of data sets in public databases and methods in the literature. Our bad science begets more bad science.
- Ethical concerns of experimentation: animals and clinical samples.

7

• Time and career of individuals.

Statistical Aspects of Experimental Design

Ronald A. Fisher(1890-1962)

"TO CONSULT THE STATISTICIAN AFTER AN EXPERIMENT IS FINISHED IS OFTEN MERELY TO ASK HIM TO CONDUCT A POST MORTEM EXAMINATION. HE CAN PERHAPS SAY WHAT THE EXPERIMENT DIED OF."

"... VERY OFTEN, ... THE MOST ELABORATE STATISTICAL REFINEMENTS POSSIBLE COULD INCREASE THE PRECISION BY ONLY A FEW PERCENT, YET A DIFFERENT DESIGN INVOLVING LITTLE OR NO ADDITIONAL EXPERIMENTAL LABOUR MIGHT INCREASE THE PRECISION TWO-FOLD, OR FIVE-FOLD OR EVEN MORE."

9

Central Dogma of Parametric Statistics

- Data follow a distribution
- Important parameters
 - Mean
 - Variance
- Population parameters unknown
- Estimated using sampling
- Parameters estimated from samples used for inferring population parameters

Precision and Accuracy

CAMBRIDGE

INSTITUTE

Aspects of Experimental Design

- EXPERIMENTAL FACTORS
- **POWER**
 - Sources of Variance
 - Replicates
- ERRORS
 - Confounding factors
 - Bias
 - Random errors

Experimental Factors

Experimental Factors

INDEPENDENT AND DEPENDENT VARIABLES

- Independent variable (IV): what you change
- Dependent variable (DV): what changes due to IV
- "If (independent variable), then (dependent variable)"

VARIABLE TYPE DEPENDS ON TYPE OF MEASUREMENT:

- Categorical (nominal), e.g. gender
- Categorical with ordering (ordinal), e.g. tumour grade
- Discrete, e.g. shoe size, number of cells
- Continuous, e.g. body weight in kg, height in cm

Power: Charactertising Variance using Replication

215

Sources of Variance

- Total Variance
 - Biological variance
 - Stochastic in nature
 - Technical variance
 - Like using different instruments
 - Sample processing in batches
 - o Treatment variance
 - Captures the effect of treatment

Types of Replication

BIOLOGICAL REPLICATION:

- In vivo:
 - Patients
 - Mice
- In vitro:
 - Different cell lines
 - Re-growing cells (passages)

TECHNICAL REPLICATION:

- Experimental protocol
- Measurement platform (i.e. sequencer)

Sample size and experimental power

WHY DO YOU NEED REPLICATES?

CALCULATING APPROPRIATE SAMPLE SIZES

- Power calculations
- Planning for precision
- Resource equation

EXPERIMENTAL POWER

- **Power**: Probability of detecting an effect, if there is a true effect present to detect.
- Statistical power increases with ...
 - Higher sample sizes
 - Higher effect size
 - Low variance
 - Higher alpha values

HPB Surg. 2014;2014:310372.

Bias: Counfounders, Randomisation, and Controls

Sciencexpress

Report

Genetic Signatures of Exceptional Longevity in Humans

Paola Sebastiani,¹* Nadia Solovieff,¹ Annibale Puca,² Stephen W. Hartley,¹ Efthymia Melista,³ Stacy Andersen,⁴ Daniel A. Dworkis,³ Jemma B. Wilk,⁵ Richard H. Myers,⁵ Martin H. Steinberg,⁶ Monty Montano,³ Clinton T. Baldwin,^{6,7} Thomas T. Perls⁴*

¹Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA. ²IRCCS Multimedica, Milano, Italy; Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, 20122, Italy. ³Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA. ⁴Section of Geriatrics, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA. ⁵Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA. ⁶Departments of Medicine and Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA. ⁷Center for Human Genetics, Boston University School of Medicine, Boston, MA 02118, USA.

•GWAS STUDY: 800 CENTENARIANS VS. CONTROLS

•FOUND 150 SNPS PREDICTING CENTENARIANS WITH 77 % ACCURACY •PROBLEM: THEY USED DIFFERENT SNP CHIPS FOR CENTENARIANS

AND CONTROLS

• RETRACTED FOLLOWING INDEPENDENT REVIEW AND QC OF DATA

http://www.the-scientist.com/blog/display/57558/

Confounding Factors

WHAT COULD ACCOUNT FOR THESE FINDINGS?

- Democrats were less satisfied with their sex lives than Republicans.
 (ABC poll report)
- Overweight people have longer life expectancy than thin people (US Centre for Disease Control)

Technical Confounding Factors: Batch Effects

RNA Extraction

Day1, Plate 1

Day2, Plate 2

Day3, Plate 3

Treatment 2

Control

The difference between Control, Treatment 1 and Treatment 2 is confounded by **day** and **plate**.

Randomised Block Design

Blocking is the arranging of *experimental units* in groups (blocks) that are similar to one another.

RBD across plates so that each plate contains spatially randomised **equal proportions** of:

- Control
- Treatment 1
- Treatment 2
- controlling plate effects.

Randomised Block Design

Good design example: Alzheimer's study from GlaxoSmithKline

Plate effects by *plate*

Left PCA plot show *large plate effects*. Each colour corresponds to a different plate

Plate effects by case/control

Right PCA plot shows each plate cluster contains *equal proportions* of cases (blue) and controls (green).

http://blog.goldenhelix.com/?p=322

Experimental Controls

Experimental Controls

CONTROLLING ERRORS

- Type I: False Positives (reject true H0)
 - Use Negative controls: A group that should have minimal or no effect
- Type II: False Negative (fail to reject a false H0)
 - Use Positive controls: A group where known response expected

TECHNICAL CONTROLS

- Detect/correct technical biases
- Normalise measurements (quantification) e.g. spike-ins

Examples of Experimental Controls

- WILD-TYPE ORGANISM (KNOCKOUTS)
- INACTIVE siRNA (SILENCING)
- VEHICLE (TREATMENTS)
- INPUT: FRAGMENTED CHROMATIN (ChIP)
- SPIKE-INS (QUANTIFICATION/NORMALISATION)
- **"GOLD STANDARD" DATAPOINTS**
- MULTI-LEVEL CONTROLS
 - e.g. contrast Vehicle/Input vs. Treatment/Input

Design Parameters for Sequencing Experiments

Design Issues: Sequencing Experiments

PLATFORMS LIBRARY PREPS MULTIPLEXING AND POOLING STRATEGIES SINGLE-END VS PAIRED END SEQUENCING DEPTH

- Coverage
- Lanes

VALIDATION

- Knock-downs
- Pull-downs

Experimental Design process at CRUK-CI

CRUK-CI Experimental Design Process

- Students required to take (this) Experimental Design class
- Experimental design review meetings for sequencing and proteomics experiments require
 - Simple form with key aspects of experiment
 - Attended by Scientists, Genomics/Proteomics Core, Bioinformatics Core, Statistician

31

- Project opened in LIMS afterwards
- Randomisation and Layouts
 - Checkpoint for experiment
 - Project cleared for sample submission
- Keys:
 - Form and meeting not difficult
 - Not chargeable
 - Scientists agree process improves experiments!

Experimental Design Meetings - Genomics

WEDNESDAY 30 MIN SLOTS (2:00-3:00PM) WITH BIOINFORMATICS GENOMICS/ CORES REQUIREMENTS:

- Email <u>CRIExperimentalDesign@cruk.cam.ac.uk</u> to request meeting
- Fill in Experimental Design Form and return at least couple of days before meeting
- Your attendance
- Provide project background (a few slides from you)

DISCUSSION:

- Planning, time-scale, cost, aims, scope, questions
- Choosing the correct technology
- Effect size & Sample-size calculation?
- Sample collection and processing methods
- Sample information (meta-data) collection
- Randomisation, Blocking and Replication issues
- Technical issues e.g. what sequencing depth?
- Will Bioinformatics Core help with/do analysis?
- Analysis deliverables

Experimental Design Meetings - Proteomics

- FRIDAY 45 MIN SLOTS (10-11:30AM)) WITH BIOINFORMATICS PROTEOMICS CORES REQUIREMENTS:
 - Email <u>ProteomicsProjectDesign@cruk.cam.ac.uk</u> to request meeting
 - Provide project background (a few slides from you)

DISCUSSION:

- Planning, time-scale, cost, aims, scope, questions
- Choosing the correct technology
- Sample collection and processing methods
- Sample information (meta-data) collection
- Randomisation, Blocking and Replication issues
- Will Bioinformatics Core help with/do analysis?
- Analysis deliverables

Experimental Design Guide

- HTTPS://SHAREPOINT.CRI.CAMRES.ORG/SITES/BIOINFORMATICS/P UBLIC/INRODUCTIONTOEXPERIMENTALDESIGN/EXPERIMENTALDES IGNMANUAL.PDF
- TINYURL.COM/CRUK-EDESIGN

Practicals

- 1. Genomic/Clinical: Identification of prognostic biomarkers in human prostate cancer patients (Abbi)
- 2. RNA-seq/Animal: Effects of mutant vs wildtype HHEX in liver and brain development (Chandu)
- 3. Quantitative Proteomics/Cultured Cells: AR interactome differences between drug responsive/resistant conditions (Ash)
- 4. ChIP-seq/Animal: Evolution of transcription factor binding in mouse strains (Rory)

