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Disclaimer

This tutorial is a modified version of its original presented by Tom Carroll at the Bioconductor course, 2014 .

Reference: Carroll T. Assessing ChIP-seq sample quality with ChIPQC. BioC 2014, Boston. 2014. http://www.

bioconductor.org/help/course-materials/2014/BioC2014/Bioc2014_ChIPQC_Practical.pdf

1 Introduction

This practical aims to introduce you to the analysis of ChIP-seq data in R. This will include loading aligned reads and
peak call data into the R environment, performing various data analyses and visualisations and assessing ChIP-seq data
quality using the ChIPQC package with real world datasets. R provides support for various sequencing data formats.
Here we will work with aligned reads in indexed BAM files and BED files containing peaks called by MACS.

First we would need to load the libraries required:

library(GenomicAlignments)

library(ChIPQC)

library(GenomicRanges)

set your working directory to the Course Materials folder:

setwd("/home/participant/Desktop/Course_Materials")

2 Working with aligned data

2.1 Reading in data

All files needed for this tutorial are contained within the directory ’Day4/data for practical/’ including BAM files (.bam)
and BAM index files (.bam.bai).

Firstly we create a BamFileList object for use within the R environment. Many packages assume the naming convention
for BAM indicies to be ’.bam.bai’ although different names may be explicitly passed to these functions.

Use Case: Create a BamFileList object containing details of the BAM files we wish to analyse

dataDir <- "Day4/data_for_practical/"

bamFiles <- dir(file.path(getwd(), dataDir), pattern="*.bam$", full.name=T)

names(bamFiles) <- gsub(".bam","",basename(bamFiles))

bamFiles

bfList <- BamFileList(bamFiles)

bfList

Now that we have all the BAM files in a convenient list we can look at the information within the headers using
scanBamHeader() function. This requires a path to the BAM file which we can get using the path() function.

Use Case: Extract the sam header for a single bam file and examine the structure of the list using the str() function

path(bfList)

samHeader <- scanBamHeader(path(bfList["TF_1"]))

str(samHeader,max.level=2)

We get a list containing two components: The first is ’targets’ which contains a list of chromosomes used in the alignment.
The second is ’text’ which contains information including the species and alignment method used.

http://www.bioconductor.org/help/course-materials/2014/BioC2014/Bioc2014_ChIPQC_Practical.pdf
http://www.bioconductor.org/help/course-materials/2014/BioC2014/Bioc2014_ChIPQC_Practical.pdf
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Use Case: Explore the information provided in the sam header. Find how the data has been sorted, the aligner used
and what species the data has been aligned to.

samHeader[[1]]$targets

samHeader[[1]]$text

samHeader[[1]]$text["@HD"]

samHeader[[1]]$text["@PG"]

samHeader[[1]]$text["@CO"]

BAM files usually contain a lot of information and it is often more feasible to deal with a single chromosome at a time
for processing and analysis.

Here we will set up parameters in order to select only reads aligning to Chromosome 1

Use Case: Extract information about chromosome 1 coordinates to set up filtering parameters using the ScanBamParam()
function.

chr1dat <- samHeader[[1]]$targets["chr1"]

chr1dat

chr1range <- GRanges(seqnames=names(chr1dat),ranges=IRanges(1,chr1dat))

param <- ScanBamParam(which=chr1range)

param

Note that in this example, we use the default ScanBamParam ’flag’ argument. However we could use this to build further
filters (e.g. to remove duplicates or other potential artifacts) using the scanBamFlag() function. Look at the options
for this function for more details using ?scanBamFlag

Use Case: Having selected an area of interest, read in read data from a single BAM file using the parameters set using
the readGAlignments() function. Convert this to a GenomicRanges object and inspect the data contained within.
Calculate the average read length of the selected reads (in case some reads were trimmed).

alignDat <- readGAlignments(path(bfList["TF_1"]),param=param)

alignGR <- granges(alignDat)

seqlevels(alignGR) <- "chr1"

median(width(alignGR))

3 Calling peaks with MACS2

MACS takes mapped BAM files of ChIP-seq and control samples and calls peaks. To call peaks, we will use the main
module in MACS2 called ’callpeak’. It can be invoked by ’macs2 callpeak’ command. If you type this command without
parameters, you will see a full description of command-line options. Here we only list commonly used ones, for more
detail read MACS2 documentation https://github.com/taoliu/MACS/.

3.1 Calling peaks with MACS2 in the command line

Use Case: In the command-line (terminal), run MACS2 to call peaks. Use TF 1.bam and the Input.bam files located in
the ’Day4/data for practical/’ directory.

Use the terminal window

https://github.com/taoliu/MACS/
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cd /home/participant/Desktop/Course_Materials/Day4/data_for_practical

macs2 callpeak -t TF_1.bam -c Input.bam -n mypeaks

We used the following options:

-t: This is the only required parameter for MACS, refers to the name of the file with the ChIP-seq data

-c: The control or mock data file

-n: The name string of the experiment

MAC2 creates 4 files (mypeaks peaks.narrowPeak, mypeaks summits.bed, mypeaks peaks.xls and mypeaks model.r)

3.2 Loading peak call data into the R environment

Use Case: load the peaks file in R

The peak file contains the genomic intervals for each peaks and it is named mypeaks peaks.narrowPeak (the prefix
’mypeaks’ of the filename was given by the -n parameter). The NarrowPeak format is a extension of BED format. The
USCS webpage contains information about what each column in the NarrowPeak format means (http://genome.ucsc.
edu/FAQ/FAQformat.html#format12).

You can load theNarrowPeak file into R using the read.delim function. We specify header=FALSE to indicate that the
file does not contain column names as its first line.

#Run this in R

setwd("/home/participant/Desktop/Course_Materials")

mypeaks <- read.delim("Day4/data_for_practical/mypeaks_peaks.narrowPeak", header=F)

colnames(mypeaks) <- c("chrom", "chromStart", "chromEnd", "name","score", "strand", "fold.enrichment","log10.pvalue", "log10.qvalue", "peak")

head(mypeaks)

## chrom chromStart chromEnd name score strand fold.enrichment

## 1 chr1 526349 526864 mypeaks_peak_1 239 . 14.31

## 2 chr1 750648 751354 mypeaks_peak_2 952 . 23.20

## 3 chr1 2342155 2342787 mypeaks_peak_3 572 . 23.11

## 4 chr1 2549147 2549618 mypeaks_peak_4 130 . 9.08

## 5 chr1 4657143 4657629 mypeaks_peak_5 336 . 17.16

## 6 chr1 4790217 4790582 mypeaks_peak_6 80 . 6.19

## log10.pvalue log10.qvalue peak

## 1 27.3 23.95 247

## 2 99.5 95.29 423

## 3 61.1 57.27 328

http://genome.ucsc.edu/FAQ/FAQformat.html#format12
http://genome.ucsc.edu/FAQ/FAQformat.html#format12
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## 4 16.2 13.09 216

## 5 37.1 33.61 228

## 6 11.0 8.01 143

Use Case: Create a genomic ranges object

Because the NarrowPeak format is a extension of BED format, you will need to convert the 0-base start coordinates
encoded in the BED format to 1-base start coordinates (just sum +1 to every start coordinate). Remember, only the
start coordinated have to be shifted, the end coordinates don’t have to be shifted.

library(GenomicRanges)

GRanges(mypeaks$chrom, IRanges(mypeaks$chromStart+1, mypeaks$chromEnd))

## GRanges object with 1281 ranges and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] chr1 [ 526350, 526864] *

## [2] chr1 [ 750649, 751354] *

## [3] chr1 [2342156, 2342787] *

## [4] chr1 [2549148, 2549618] *

## [5] chr1 [4657144, 4657629] *

## ... ... ... ...

## [1277] chr1 [246977471, 246977839] *

## [1278] chr1 [247677836, 247678226] *

## [1279] chr1 [247840780, 247841255] *

## [1280] chr1 [248093673, 248094130] *

## [1281] chr1 [249217644, 249217995] *

## -------

## seqinfo: 1 sequence from an unspecified genome; no seqlengths

4 A simple example using ChIPQsample()

ChIPQC package allows for a quick assessment of the quality of your ChIP-seq data. It requires aligned data in the BAM
format and a set of previously identified peak files in the BED format. The main function is ChIPQCsample(). This
function can be run by simply indicating the location of a a BAM file.

First, set your working directory to the Course Materials folder a load ChIPQC library:

setwd("/home/participant/Desktop/Course_Materials")

library(ChIPQC)

Use Case: Run ChIPQCsample on a single BAM file. As an example, we will use the TF 1.bam file located in the
’Day4/data for practical/’ directory.

The chromosomes parameter specifies which chromosomes to examine when computing quality metrics. To increase the
speed of computations and the reduce the size of the resulting ChIPCexperiment object we will limit the analysis in this
example to chromosome 1.

bamFile <- file.path(getwd(), "Day4/data_for_practical/TF_1.bam")

exampleExp = ChIPQCsample(bamFile,peaks=NULL,annotation=NULL,chromosomes="chr1")

The function ChIPQCsample will return ChIPQC object

class(exampleExp)
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## [1] "ChIPQCsample"

## attr(,"package")

## [1] "ChIPQC"

exampleExp

## ChIPQCsample

## Number of Mapped reads: 497994

## Number of Mapped reads passing MapQ filter: 420386

## Percentage Of Reads as Non-Duplicates (NRF): 96.33(0.04)

## Percentage Of Reads in Blacklisted Regions: NA

## SSD: 1.59071199216826

## Fragment Length Cross-Coverage: 0.00533687290155682

## Relative Cross-Coverage: 2.80111111111111

## Percentage Of Reads in GenomicFeature:

## ProportionOfCounts

## 5utrs NA

## 3UTRs NA

## CountsinReads NA

## Introns NA

## Transcripts NA

## Promoters500 NA

## Promoters2000to500 NA

## LongPromoter20000to2000 NA

## Percentage Of Reads in Peaks: NA

## Number of Peaks: 0

## GRanges object with 0 ranges and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## -------

## seqinfo: no sequences

Use Case: Use the function QCmetrics to show a summary of the main quality control metrics.

QCmetrics(exampleExp)

## Reads Map% Filt% Dup% ReadL FragL RelCC SSD

## 4.98e+05 1.00e+02 1.56e+01 4.35e+00 3.60e+01 1.55e+02 2.80e+00 1.59e+00

## RiP%

## NA

You can see there are 497,994 reads in this example BAM file. A large number of reads from a sufficiently complex
library increases the chances of finding true binding sites [3]. However, the ’optimal’ required number of reads for your
experiment largely depends on enrichment, antibody quality, and the fraction of the genome containing the feature being
measured. That is why it is so important to analyse the quality of your data using a variety of quality metrics.

Use Case: To take full advantage of ChIPQC features, run ChIPQCsample on a single BAM file including additional
information on blacklisted regions, genome annotation and any peaks

peaksFile <- file.path(getwd(), "Day4/data_for_practical/TF_1_peaks.bed")

data(blacklist_hg19)

exampleExp = ChIPQCsample(bamFile,peaks=peaksFile,blacklist=blacklist.hg19,

annotation="hg19",chromosomes="chr1")

QCmetrics(exampleExp)
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## Reads Map% Filt% Dup% ReadL FragL RelCC SSD

## 4.98e+05 1.00e+02 1.56e+01 4.35e+00 3.60e+01 1.55e+02 2.80e+00 1.59e+00

## RiP% RiBL%

## 1.30e+01 2.92e+00

4.1 QCmetrics summary

Now the result of QCmetrics contains a number of quality metrics for your ChIP-seq BAM file. This is what they mean:

Reads total number of reads in the bam file.

Map% Percentage of total reads that were successfully mapped (aligned).

Filt% Percentage of mapped reads passing MapQ filter, in this case having a mapping quality score less than or equal
to 15 (mapQCth=15 by default)

Dup% Percentage of mapped reads marked as duplicates.

ReadL Mean read length (as integer) derived from the data.

FragL Predicted fragment length by cross-coverage method. The fragment length is estimated by methods implemented
in the chipseq package by systematically shifting the reads on each strand towards each other until the minimum genome
coverage is achieved.

RelCC The relative cross-coverage score. The RelCC metric is calculated by comparing the maximum cross coverage
peak (at the shift size corresponding to the fragment length) to the cross coverage at a shift size corresponding to the
read length, with higher scores (generally 1 or greater) indicating good enrichment.

SSD Standardised standard deviation, or SSD score, as implemented in htSeqTools. This is another indication of evidence
of enrichment. It is computed by looking at the standard deviation of signal pile-up along the genome normalised to the
total number of reads. An enriched sample typically has regions of significant pile-up so a higher SSD is more indicative
of better enrichment. SSD scores are dependent on the degree of total genome wide signal pile-up and so are sensitive
to regions of high signal found with Blacklisted regions as well as genuine ChIP enrichment.

RiP% Reads mapped to peaks. This is another good indication of how ”enriched” the sample is, and can be considered
a ”signal-to-noise” measure of what proportion of the library consists of fragments from binding sites vs. background
reads. RiP% values for ChIPs around 5% or higher generally reflect successful enrichment.

RiBL% Reads mapped to blacklists. The signal from blacklisted has been shown to contribute to confound peak callers
and fragment length estimation as well as contribute to the read length peak in cross coverage and cross coverage read
length peak [1].

Now we have our full ChIPQCsample object we can start to review and visualise the metrics generated.

4.2 Cross-coverage and the FragmentLength/Relative cross-coverage scores (FragCC/RelCC)

For transcription factors and narrow epigenetic marks, an accumulation of Watson and Crick reads around the binding
site/mark is often be seen. In ChIPQC we assess the reduction in total genome covered which occurs from shifting the
Watson reads along the genome (from 5’ to 3’ of chromosome). This is performed by measuring measure total coverage
after each every successive shift of 1bp. As the Watson reads overlap the Crick reads around peaks the total genome
covered will be reduced. The total coverage after each successive shift is then converted to cross-coverage scores after
each shift.

CrossCoverageScoren = (TotalGenomeCoverage0− TotalGenomeCoveragen)/TotalGenomeCoverage0

Where n is the bp shift of Watson reads and 0 is after no shift of Watson reads.
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The cross-coverage scores after successive shifts can then be visualised and reviewed to identify the expected increase
in cross-coverage scores around the fragment length as well as any evidence of artifacts by a peak in the cross-coverage
score at the read length.

Use Case: Use the plotCC function to calculate cross-coverage scores and plot those after successive shifts.

plotCC(exampleExp)

0.000

0.002

0.004

0 100 200 300
Shift_Size

CC_Score

The area shaded in gray (from 0 to 1.5*readlength) is excluded when identifying the fragment length peak. This is due
to the presence of the artifact peak which, in less enriched samples, may have greater cross-coverage score than observed
at the fragment length.

We can see that this ChIP has a peak in cross-coverage scores at 155bp, corresponding to the fragment size. This
indicates that we have successfully enriched for signal around binding sites.

fragmentlength(exampleExp)

## [1] 155

Further to the visual inspection of the cross-coverage scores, we can extract RelCC and FragCC scores. These metrics
can be considered to relate to efficiency of ChIP (FragCC) and efficiency of ChIP compared to artifact signal (RelCC).

FragCC = CrossCoverageScoremax

RelCC = CrossCoverageScoremax/CrossCoverageScorereadlength

Where max is shift with maximum cross-coverage score (excluding area 0 to 1.5*readlength) and readlength is the shift
corresponding to the read length.

Use Case: Extract the RelCC score using the RelativeCrossCoverage function respectively.

FragmentLengthCrossCoverage(exampleExp) / ReadLengthCrossCoverage(exampleExp)

## [1] 2.8

RelativeCrossCoverage(exampleExp)

## [1] 2.8

In this example we find, as expected from cross-coverage scores graph, that the the RelCC score is above 1 indicating a
successful ChIP.
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4.3 Distribution of signal within peaks

Another measurement of ChIP enrichment is the fraction of reads in peaks (FRiP or RiP%) metric. ChIPQC calculates
the fraction of reads that fall in previously identified peak regions. Note that this metric is sensitive to the determination
of enriched regions, comparison between samples is possible only when using the identical peak caller and parameters.

Use Case: To get the percentage of reads landing in peaks use the frip function as well as the plotFrip function for
visualisation.

plotFrip(exampleExp)
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frip(exampleExp)

## [1] 0.13

Larger FRiP values indicate higher signal to noise; 1 is the maximum possible value (all reads are signal) and 0 is the
minimum possible value (all reads are noise). The FRiP metric shows that we have a percentage of signal in peaks of
13%; this is greater than 5% indicating a ChIP of acceptable quality.

4.4 Distribution of signal in annotated regions

When provided with annotation in the form of genomic regions, ChIPQC can measure the enrichment of signal within
them. The regi function provides a simple enrichment statistic which illustrates the distribution of signal within genomic
interval annotation over that expected given their size.

regi = ProportionOfReadsInInterval/ProportionOfGenomeInInterval

Use Case: To review regi statistics, use the regi function or plot enrichment using plotRegi.

regi(exampleExp)

## LongPromoter20000to2000 Promoters2000to500 Promoters500
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## 0.0274 0.4918 1.1518

## All5utrs Alltranscripts Allcds

## 0.9837 0.1327 0.3780

## Allintrons All3utrs

## 0.1378 0.2939

plotRegi(exampleExp)
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The regi scores and heatmap show an enrichment for regions around the TSS including 5’UTRs, and 500bp upstream
regions. This suggests that the TF in question is a promoter associated transcription factor.

4.5 Dispersion of coverage across the genome

A hallmark of good ChIP data is the inequality of coverage that occurs when there is enrichment of reads to certain
portions of the genome (e.g. transcription factor binding sites, peaks). We can evaluate the dispersion of coverage in
two ways within ChIPQC, first by visualising the histogram of coverage depths and secondly by applying the SSD metric
before and after removal of blacklisted regions.

First we draw the coverage histogram using plotCoverageHistogram. Note the cut-off at 100bp for visualisation
purposes. If you want to replot the whole histogram you can extract the data using coveragehistogram function or extend
x-axis as shown in Advanced Topics section.

coveragehistogram(exampleExp)[1:10]

## 0 1 2 3 4 5 6 7

## 2.34e+08 1.36e+07 1.02e+06 1.44e+05 5.32e+04 3.11e+04 1.97e+04 1.36e+04

## 8 9

## 1.01e+04 7.55e+03

plotCoverageHist(exampleExp)
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The coverage histogram shows that there is a significant stretch of high signal pile-up. This may indicate significant signal
associated to binding events but could also be from signal seen within blacklisted regions. To assess the contribution of
artifact signal to global distribution of signal pileup we measure SSD before and after exclusion of signal from known
blacklisted regions.

plotSSD(exampleExp)

Sample

0 1 2 3 4
SSD

S
am

pl
e Filter

Post_Blacklist

Pre_Blacklist

Here we find that the SSD signal is not greatly affected by blacklisted regions and so, taken together with the coverage
histogram, indicates the TF ChIP has a clear ChIP-signal above background.

4.6 Conclusion

From the combination of metrics used here we can establish that this ChIP showed an enrichment for structured ChIP-
signal, had a signal pile-up above that seen within artifact regions and that this ChIP is positively associated with TSS
regions.
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5 Assessing a ChIP-seq experiment using ChIPQC() - Example 1

The ChIPQC function wraps the functionality of ChIPQCsample to allow for the assessment of multiple datasets. We
start by creating a samplesheet that contains the location for the necessary files. An example of the layout for a sample
sheet can be seen in the ”sample.csv” file that you can find under ”Day4/data for practical”.

5.1 Reading a sample sheet

Use Case: Load the samplesheet into R

samples = read.csv("Day4/data_for_practical/samples.csv")

samples

## SampleID Tissue Factor Replicate bamReads

## 1 MCF7_GATA3_1 MCF7 GATA3 1 MCF7_GATA3_Myers_Rep1.bam

## 2 MCF7_GATA3_2 MCF7 GATA3 2 MCF7_GATA3_Myers_Rep2.bam

## 3 MCF7_CTCF_2 MCF7 CTCF 2 MCF7_CTCF_Myers_Rep2.bam

## 4 MCF7_CTCF_1 MCF7 CTCF 1 MCF7_CTCF_Myers_Rep1.bam

## 5 A549_GATA3_1 A549 GATA3 1 A549_GATA3_Myers_Rep1.bam

## 6 A549_GATA3_2 A549 GATA3 2 A549_GATA3_Myers_Rep2.bam

## 7 A549_CTCF_1 A549 CTCF 1 A549_CTCF_Myers_Rep1.bam

## 8 A549_CTCF_2 A549 CTCF 2 A549_CTCF_Myers_Rep2.bam

## Peaks

## 1 MCF7_GATA3_Myers_Rep1.bed

## 2 MCF7_GATA3_Myers_Rep2.bed

## 3 MCF7_CTCF_Myers_Rep2.bed

## 4 MCF7_CTCF_Myers_Rep1.bed

## 5 A549_GATA3_Myers_Rep1.bed

## 6 A549_GATA3_Myers_Rep2.bed

## 7 A549_CTCF_Myers_Rep1.bed

## 8 A549_CTCF_Myers_Rep2.bed

The sample sheet refers to data downloaded from the ENCODE portal [4]. The ChIP-seq data refers to GATA3 and
CTCF ChIPs obtained in A549 and MCF7 cell lines. The BAM files were aligned the hg19 reference genome.

To reduce the size of the dataset being analysed in this practical, we have pre-computed the ChIPQC object:

#exampleExp2 = ChIPQC(samples,annotation="hg19")

#save(exampleExp2, file="ChIPQCexample1.RData")

You just need to load the resulting file using the following code:

Rdata <- file.path(getwd(), "Day4/data_for_practical/ChIPQCexample1.RData")

load(Rdata)

Now have a look at the resulting ChIPQC object:

exampleExp2

## Samples: 8 : MCF7_GATA3_1 MCF7_GATA3_2 ... A549_CTCF_1 A549_CTCF_2

## Tissue Factor Replicate Peaks

## MCF7_GATA3_1 MCF7 GATA3 1 42381

## MCF7_GATA3_2 MCF7 GATA3 2 23604

## MCF7_CTCF_2 MCF7 CTCF 2 39765

## MCF7_CTCF_1 MCF7 CTCF 1 39464

## A549_GATA3_1 A549 GATA3 1 6075
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## A549_GATA3_2 A549 GATA3 2 19702

## A549_CTCF_1 A549 CTCF 1 33001

## A549_CTCF_2 A549 CTCF 2 31725

## Reads Map% Filt% Dup% ReadL FragL RelCC SSD RiP% RiBL%

## MCF7_GATA3_1 1878415 100 0 0 50 114 1.560 1.81 22.10 0.620

## MCF7_GATA3_2 826002 100 0 0 50 208 2.540 1.49 22.60 0.957

## MCF7_CTCF_2 1361078 100 0 0 50 110 1.840 2.30 24.50 0.770

## MCF7_CTCF_1 1974422 100 0 0 50 119 1.880 3.23 22.10 0.871

## A549_GATA3_1 1573136 100 0 0 50 104 0.983 1.38 2.78 0.972

## A549_GATA3_2 1896160 100 0 0 50 174 1.910 1.55 13.80 0.855

## A549_CTCF_1 2268054 100 0 0 36 151 3.080 3.31 15.20 4.060

## A549_CTCF_2 1439996 100 0 0 36 124 2.980 2.76 20.90 3.710

5.2 QCmetrics summary

The QCmetrics function now displays a table of metrics as seen before:

QCmetrics(exampleExp2)

## Reads Map% Filt% Dup% ReadL FragL RelCC SSD RiP% RiBL%

## MCF7_GATA3_1 1878415 100 0 0 50 114 1.560 1.81 22.10 0.620

## MCF7_GATA3_2 826002 100 0 0 50 208 2.540 1.49 22.60 0.957

## MCF7_CTCF_2 1361078 100 0 0 50 110 1.840 2.30 24.50 0.770

## MCF7_CTCF_1 1974422 100 0 0 50 119 1.880 3.23 22.10 0.871

## A549_GATA3_1 1573136 100 0 0 50 104 0.983 1.38 2.78 0.972

## A549_GATA3_2 1896160 100 0 0 50 174 1.910 1.55 13.80 0.855

## A549_CTCF_1 2268054 100 0 0 36 151 3.080 3.31 15.20 4.060

## A549_CTCF_2 1439996 100 0 0 36 124 2.980 2.76 20.90 3.710

The table shows a summary of QC metrics, including the total number of peaks and reads in the correspondent files
for each sample, the percentage of these that were successfully mapped (Map%), the percentage of filtered reads based
on the mapping quality (15 by default) and the duplication rates (Dup%), the read length (ReadL) and the estimated
fragment length (FragL).

Map%, Filt% and Dup%

Our downloaded BAM files contain only the good quality reads, so ChIPQC shows 100% alignment rate and 0% filtered
or duplicated reads.

RelCC

The RelCC is a metric of ChIP-enrichment. For all samples, the RelCC score is greater than 1, indicating high quality,
except for one of the GATA3 samples in A549 cells.

SSD

The SSD score is another metric of ChIP-enrichment. It is sensitive to regions of significant pile-up or reads, here the CTCF
samples in both A549 and MCF7 show higher SSD scores (2)thanGATA3samplesandsogreatestenrichmentfordepthofsignal.

RiP%

RiP reports the percentage of reads that overlap called peaks (%RiP, also known as FRiP). This is another good indication
of how enriched the sample is. RiP% values for ChIPs around 5% or higher generally reflect successful enrichment (from
ChIPQC vignette). Here, once again, one of the GATA3 samples in A549 cells jumps out with a low %RiP (2.78%)
indicating that a big proportion of this library consists of background noise.

RiBL%
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Finally, RiBL reports the percentage of reads that overlap blacklisted regions (%RiBL). The signal from blacklisted regions
has been shown to influence the performance of peak callers [1].

5.3 Examining reads in peaks

Use Case: Visualise the number of reads in peaks A quick way to visualise the relative number of reads that overlap
peaks vs. background reads is using the plotRap function.

Here its clearly visible the low %RiP for one of the GATA3 samples in A549 cells:

plotRap(exampleExp2,facetBy=c("Factor","Tissue"))
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5.4 Assessing sample similarity with Diffbind

A final set of metrics useful for ChIP-quality relate to the correlation between binding events across samples within a
ChIPQCexperiment. When analysing an experiment, ChIPQC will perform a sample clustering based on the co-occurrence
of peaks using methods available within the DiffBind package.

Use Case: Examine clustering of samples based on the co-occurrence of peaks To produce the a sample heatmap, the
plotCorHeatmap function can be used.

In this example (and has we would expect) the CTCF and GATA3 samples form two distinct clusters:

plotCorHeatmap(exampleExp2)
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6 Assessing a ChIP-seq experiment using ChIPQC() - Example 2

For this section of the practical we have pre-computed the ChIPQC object. Load the ChIPQC object by typing:

#resExperiment = ChIPQC(SampleSheet,annotation="mm9")

Rdata <- file.path(getwd(), "Day4/data_for_practical/BCell_Examples.RData")

load(Rdata)

Now you can look at ’resExperiment’, it contains a ChIPQCexperiment object:

resExperiment

## Samples: 19 : DNAse Ebf1 ... RNAPol2 RNAPol2ser2

## Tissue Factor Replicate Peaks

## DNAse Ch12 DNAse 1 72437

## Ebf1 ProB Ebf1 1 9841

## H3K4me3_IkNeg ProB H3K4me3 1 18462

## H3K4me3_IkPos ProB H3K4me3 2 20052

## H3K9ac_IkNeg ProB H3K9ac 1 27486

## H3K9ac_IkPos ProB H3K9ac 2 25902

## Ikaros_1_DPT DPT Ikaros 1 22253

## Ikaros_1_preproB preProB Ikaros 1 16240

## Ikaros_1_proB ProB Ikaros 1 15377

## Ikaros_2_preproB preProB Ikaros 2 16038

## Input_2_proB ProB Input 1 0

## Input_Ch12 Ch12 Input 1 0

## Irf ProB Irf 1 39628

## Mi2b_IKneg ProB Mi2b 1 0

## Mi2b_IKpos ProB Mi2b 2 0

## Myc Ch12 Myc 1 44982

## Pu1 ProB Pu1 1 48472

## RNAPol2 Ch12 RNAPol2 1 59266

## RNAPol2ser2 Ch12 RNAPol2_Ser2 1 30787

## Reads Map% Filt% Dup% ReadL FragL RelCC SSD RiP% RiBL%

## DNAse 1.10e+08 100 15.5 27.60 36 73 0.9280 3.22 45.40 7.94

## Ebf1 2.91e+07 100 24.3 6.60 36 177 2.6400 2.67 3.07 11.00

## H3K4me3_IkNeg 7.61e+07 100 15.1 27.00 36 228 3.9300 2.98 45.90 7.94

## H3K4me3_IkPos 1.29e+08 100 14.0 50.00 36 243 3.8200 3.61 50.70 7.40

## H3K9ac_IkNeg 6.46e+07 100 14.8 13.00 36 215 3.9300 2.28 36.30 6.73

## H3K9ac_IkPos 6.91e+07 100 13.9 14.70 36 213 4.1700 2.01 37.90 5.84

## Ikaros_1_DPT 4.83e+07 100 23.0 15.30 36 173 1.8000 3.19 5.31 10.50

## Ikaros_1_preproB 3.59e+07 100 24.7 15.30 36 175 0.2780 3.43 3.50 12.50

## Ikaros_1_proB 2.48e+07 100 23.2 13.10 36 165 0.9210 2.28 3.49 10.50

## Ikaros_2_preproB 3.55e+07 100 24.7 15.20 36 181 0.3110 3.42 3.43 12.60

## Input_2_proB 2.35e+07 100 22.1 9.73 36 120 1.6500 1.93 NA 9.02

## Input_Ch12 1.91e+07 100 25.5 21.50 36 157 0.0556 2.06 NA 9.81

## Irf 2.79e+07 100 21.4 20.80 36 153 2.3200 2.24 10.50 9.91

## Mi2b_IKneg 3.85e+07 100 23.5 29.30 36 151 0.4990 3.09 NA 11.40

## Mi2b_IKpos 3.48e+07 100 23.8 6.08 36 152 0.6380 3.02 NA 11.60

## Myc 3.93e+07 100 19.4 11.60 36 150 1.5700 2.29 16.80 8.74

## Pu1 3.41e+07 100 20.8 20.30 36 204 3.3300 2.52 22.20 8.89

## RNAPol2 3.35e+07 100 12.3 17.90 36 152 1.9200 1.11 45.70 4.98

## RNAPol2ser2 4.82e+07 100 15.0 6.63 36 125 0.8050 1.61 30.30 5.86

The QCmetrics function displays the following metrics table:
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QCmetrics(resExperiment)

## Reads Map% Filt% Dup% ReadL FragL RelCC SSD RiP% RiBL%

## DNAse 1.10e+08 100 15.5 27.60 36 73 0.9280 3.22 45.40 7.94

## Ebf1 2.91e+07 100 24.3 6.60 36 177 2.6400 2.67 3.07 11.00

## H3K4me3_IkNeg 7.61e+07 100 15.1 27.00 36 228 3.9300 2.98 45.90 7.94

## H3K4me3_IkPos 1.29e+08 100 14.0 50.00 36 243 3.8200 3.61 50.70 7.40

## H3K9ac_IkNeg 6.46e+07 100 14.8 13.00 36 215 3.9300 2.28 36.30 6.73

## H3K9ac_IkPos 6.91e+07 100 13.9 14.70 36 213 4.1700 2.01 37.90 5.84

## Ikaros_1_DPT 4.83e+07 100 23.0 15.30 36 173 1.8000 3.19 5.31 10.50

## Ikaros_1_preproB 3.59e+07 100 24.7 15.30 36 175 0.2780 3.43 3.50 12.50

## Ikaros_1_proB 2.48e+07 100 23.2 13.10 36 165 0.9210 2.28 3.49 10.50

## Ikaros_2_preproB 3.55e+07 100 24.7 15.20 36 181 0.3110 3.42 3.43 12.60

## Input_2_proB 2.35e+07 100 22.1 9.73 36 120 1.6500 1.93 NA 9.02

## Input_Ch12 1.91e+07 100 25.5 21.50 36 157 0.0556 2.06 NA 9.81

## Irf 2.79e+07 100 21.4 20.80 36 153 2.3200 2.24 10.50 9.91

## Mi2b_IKneg 3.85e+07 100 23.5 29.30 36 151 0.4990 3.09 NA 11.40

## Mi2b_IKpos 3.48e+07 100 23.8 6.08 36 152 0.6380 3.02 NA 11.60

## Myc 3.93e+07 100 19.4 11.60 36 150 1.5700 2.29 16.80 8.74

## Pu1 3.41e+07 100 20.8 20.30 36 204 3.3300 2.52 22.20 8.89

## RNAPol2 3.35e+07 100 12.3 17.90 36 152 1.9200 1.11 45.70 4.98

## RNAPol2ser2 4.82e+07 100 15.0 6.63 36 125 0.8050 1.61 30.30 5.86

6.1 Examining Cross-coverage and FragCC/RelCC scores across an experiment

As with the ChIPQCsample object, the cross coverage scores for a group of samples can be plotted using plotCC(). By
default samples will be groups by their Tissue and Factor combinations and coloured by their Replicate number. Here
we group by Factor, colour by Tissue and set the line type by the Replicate number.

FragmentLengthCrossCoverage(resExperiment)

## DNAse Ebf1 H3K4me3_IkNeg H3K4me3_IkPos

## 0.000149 0.002461 0.013315 0.013781

## H3K9ac_IkNeg H3K9ac_IkPos Ikaros_1_DPT Ikaros_1_preproB

## 0.008278 0.008374 0.001399 0.000167

## Ikaros_1_proB Ikaros_2_preproB Input_2_proB Input_Ch12

## 0.000861 0.000191 0.001500 0.000331

## Irf Mi2b_IKneg Mi2b_IKpos Myc

## 0.003734 0.000533 0.000599 0.003622

## Pu1 RNAPol2 RNAPol2ser2

## 0.018980 0.011852 0.001195

RelativeCrossCoverage(resExperiment)

## DNAse Ebf1 H3K4me3_IkNeg H3K4me3_IkPos

## 0.9277 2.6369 3.9340 3.8202

## H3K9ac_IkNeg H3K9ac_IkPos Ikaros_1_DPT Ikaros_1_preproB

## 3.9301 4.1730 1.7986 0.2776

## Ikaros_1_proB Ikaros_2_preproB Input_2_proB Input_Ch12

## 0.9207 0.3106 1.6458 0.0556

## Irf Mi2b_IKneg Mi2b_IKpos Myc

## 2.3151 0.4991 0.6378 1.5726

## Pu1 RNAPol2 RNAPol2ser2

## 3.3293 1.9199 0.8046

plotCC(resExperiment,colourBy="Tissue",facetBy="Factor",lineBy="Replicate")
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From this, it is immediately apparent that some samples not only have much higher scores, and hence efficiency, than
others but that there fragment lengths appear to be very different from each other. The DNAse sample for example has
a fragment length less than half of Pu1 sample.

Now we have established the difference in total efficiency, we can look at the overall shape of cross-coverage scores and
the relationship between signal peaks and artifact peaks in the cross-coverage scores.

To help better visualise, we will apply a further facet wrap to the ggplot2 object returned by plotCC in order to compare
within factors.

ccplot <- plotCC(resExperiment,colourBy="Tissue",facetBy="Factor",lineBy="Replicate")

ccplot +facet_wrap(~Factor,scales="free_y")
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The free scaled cross-coverage score plots now reveal more about the distribution of signal within the samples. The
Ebf1, Ikaros, Myc, Ifr and RNA Pol2 all show tight peaks within their cross-coverage score profiles illustrating their sharp
binding profiles as expected for a transcription factor (and RNA Pol2 around TSS/Enhancers). The histone marks and
Pu1 however show longer more diffused peaks reflecting the wider bredth of signal seen for these epigenetic marks.

The signal of the Ikaros ChIP between cell lines can also be seen to be highly variable with DP thymocytes containing
highest RelCC scores, ProB lower and preProB the lowest. This reflects the increased concentrations of Ikaros along
haemopoetic differentiation with DP thymocytes having the highest Ikaros levels.

Finally, an enrichment for fragment length signal can be seen in the ProB input. The sharpness of this enrichment
suggests a highly duplicated peak like signal within this track which would be cause for further investigation. This may
be from the sono-seq effect commonly observed in input, where gel-selection of fragment lengths for input causes a small
peak in cross coverage scores close to selected fragment length.

6.2 Distribution of signal within peaks and balcklists

As with the the ChIPQCsample object, the fraction of signal in peaks, blacklists and annotated genomic intervals can
provide an understanding of the ChIPs’ efficiency and pattern of enrichment.

plotFrip(resExperiment)

## Using Sample as id variables
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plotFribl(resExperiment)

## Using Sample as id variables



Working with ChIP-Seq Data in R/Bioconductor 21

Ch12, DNAse Ch12, Input Ch12, Myc Ch12, RNAPol2

Ch12, RNAPol2_Ser2 DPT, Ikaros preProB, Ikaros ProB, Ebf1

ProB, H3K4me3 ProB, H3K9ac ProB, Ikaros ProB, Input

ProB, Irf ProB, Mi2b ProB, Pu1

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

DNAse Input_Ch12 Myc RNAPol2

RNAPol2ser2 Ikaros_1_DPT Ikaros_1_preproBIkaros_2_preproB Ebf1

H3K4me3_IkNegH3K4me3_IkPos H3K9ac_IkNegH3K9ac_IkPos Ikaros_1_proB Input_2_proB

Irf Mi2b_IKneg Mi2b_IKpos Pu1
Sample

FRIBL

Reads

Inside

OutSide

Percentage Of Reads In Blacklists

The output from plotFrip immediately identifies the Histone, RNA Pol2 and DNAse ChIP as having the highest enrichment
(25% to 50%) for reads in peaks as expected for such epigenetic marks. Also apparent are the significant enrichment
seen within Pu1, Myc and Irf whereas the Ikaros ChIPs all show considerably lower enrichment for signal within peaks.

The Fribl plot here shows that all samples have equivalent levels of signal so no outlier or need to investigate signal within
known blacklisted regions.

6.3 Distribution of signal in annotated regions

Samples such as RNA Pol2, DNAse and Histone marks will have an expected enrichment for genomic locations. Here
RNA Pol2 should be expected to have a stronger enrichment at the TSS than RNA Pol2ser2 where as RNA Pol2ser2
should show enrichment within the 3’UTRs regions.

plotRegi(resExperiment)
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regi(resExperiment)["All3utrs",]

## DNAse Ebf1 H3K4me3_IkNeg H3K4me3_IkPos

## 0.4215 0.0855 -0.0823 0.0188

## H3K9ac_IkNeg H3K9ac_IkPos Ikaros_1_DPT Ikaros_1_preproB

## 0.3931 0.4044 0.1095 0.1080

## Ikaros_1_proB Ikaros_2_preproB Input_2_proB Input_Ch12

## 0.2967 0.1083 0.1527 1.0896

## Irf Mi2b_IKneg Mi2b_IKpos Myc

## 0.2840 0.1622 0.1627 0.3285

## Pu1 RNAPol2 RNAPol2ser2

## 0.2329 1.3167 1.8052

From the Regi plot it can seen that all histone marks, DNA and RNAPII show the expected enrichment across gene
regions. Combined with the output from regi function, the RNA Pol2Ser2 has the greatest enrichment at 3’UTRs and
so the expected pattern of enrichment.

To better visualise this enrichment we can adjust the scale to the enrichment seen in Ch12 input for 3’UTRs.
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plotRegi(resExperiment)+scale_fill_gradient2(low="white",high="red",

mid="white",midpoint=regi(resExperiment)["All3utrs","Input_Ch12"])

## Scale for ’fill’ is already present. Adding another scale for ’fill’, which will replace the

existing scale.
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6.4 Dispersion of coverage across the genome

Both inputs showed a small but comparatively low enrichment for reads in genetic regions. Such enrichment around gene
regions can typically be seen for input samples due to the increased accessibility of chromatin to fragmentation around
TSSs. As with the ChIPQCsample object we can plot the coverage histogram and SSD before and after blacklisting by
using the plotCoverageHist and plotSSD functions.
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plotCoverageHist(resExperiment,facetBy="Factor",colourBy="Tissue",lineBy="Replicate")
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The coverage histogram shows the expected greater spans of high signal in Histone, RNA Pol2 and DNAse ChIPs as
well as for transcription factors with both high Rip% and RelCC scores. Although most ProB transcription factors have
greater spans of high depth than their input, enrichment for these transcription factors can be seen to be much smaller
than observed for Histone,RNA Pol2 and DNAse ChIPs.

The Ikaros ChIPs universally had low enrichment and as seen with other metrics DP thymocytes had the greatest signal.

The two inputs samples show very different patterns of signal depth. The Ch12 input show considerable span of high
signal where as the ProB shows a spike in signal at above 98 reads high, in keeping with observed high duplication rate
for this sample and fragment length peak in cross-coverage scores.
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plotSSD(resExperiment)

## Using Sample as id variables
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The plot of SSD scores before and after blacklisting show that the effect of blacklisting on SSD scores is dramatic.

As with the coverage histogram plots, the histone, polymerase, DNAse marks as well as high scoring TFs have greatest
SSDs after blacklisting.

The SSD for Ikaros after blacklisting can be seen to be just above background with again DP thymocytes having the
greatest score.

For the inputs, the ProB input can be seen to have its SSD score reduced to a background level of around 0.14 indicating
the successful removal of artifact signal. The Ch12 input however can be seen to not drop to the background level after
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blacklisting suggesting remaining regions of artifact signal. The failure to reduce SSD after blacklisting suggests the
persistent presence of artifacts within the Ch12 input and flags this sample for further blacklisting.

6.5 Assessing sample similarity with Diffbind

Use Case: Visualise the correlation between samples

The plotCorHeatmap shows the clustering in correlation heatmap based on correlation values for all the peak scores for
each sample:

plotCorHeatmap(resExperiment))
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The clustering and heatmaps generated from plotCorHeatmap allow us to identify which samples are most closely related
and so both the reproducibilty of replicates and the similarity in binding profiles of different epigenetic marks. Here we
see that all replicates cluster tightly together, illustrating the relative reproducibilty of our replicates. Further to this
we see that the samples broadly group into their respective tissues with DNAse, RNA Pol2 and Myc forming the Ch12
cluster. The ProB transcription factor (Pu1, Irf and Ebf) are seen to group together as expected and are found to cluster
away from ProB histone marks. This suggests that these transcription factors may be less associated to these histone
marks than the Ikaros ChIPs.

6.6 Generating a summary HTML report

A summary HTML report can be generated for this example experiment by invoking ChIPQCreport

ChIPQCreport(resExperiment,colourBy="Tissue",facetBy="Factor",lineBy="Replicate")

ChIPQC will create a folder called ’ChIPQCreport’ in your working directory that contains the html report. You can see
the report in your browser by opening file ’ChIPQCreport/ChIPQC.html’.

tip: to check your working directory type:

getwd()

6.7 Conclusion

The analysis of the quality of this experiment’s ChIP quality using ChIPQC has identified several features of the data as
well as highlighted variability in quality across ChIPs and cell-lines.

The Histone , RNA Pol2 and DNAse ChIPs all have high RIP% and SSD after blacklisting as expected from broader
epigentic marks. Cross-coverage score profiles illustrate the broader regions of enrichment for the Histone marks, tighter
profiles for the RNA Pol2 and RNA Pol2-ser2 marks, due to their narrow enrichment in TSSs and a sharp narrow profile
for The DNAse ChIP. These epigenetic marks showed the characteristic enrichment within TSSs with RNApol2-ser2 most
enriched for 3’UTRs.

The transcription factor ChIPs showed a much wider variability in RIP%, SSD and RelCC than seen for histone, pol2
and DNAse ChIPs. Pu1 and Irf were found to be highly efficient ChIPs and Pu1 was seen in its cross coverage scores
to have a broader enrichment pattern than seen for for other TFs. The Ikaros ChIPs were found to have acceptable but
low enrichment for signal by all metrics, and the enrichment for Ikaros ChIP signal was seen to fit known concentrations
of Ikaros within these cell-lines. The ProB Pu1, Ebf and Irf transcription factors were found to cluster away from Ikaros
ChIPs indicating a greater co-occurrence of binding among them than with Ikaros ChIPs.

The inputs used in this study showed different sources of artifact contamination. The Ch12 input showed a strong
artifact, read length, peak in cross-coverage scores and significant pile-up of signal. Following blacklisting it’s SSD score
did not drop to that of a background level and so flagged this as a control for further blacklisting. The ProB input
however showed peak like signal in its cross-coverage scores profile, a high level of duplication and a spike in its coverage
histogram but removal of known blacklisted regions removed much of artifact signal as measured by SSD. Taken together,
this suggests that the ProB input contains highly duplicated peak shaped spikes in signal which were contained within
blacklisted regions.

7 Advanced Topics

7.1 Providing additional data to ChIPQC plotting and reporting

The sample sheets for ChIPQC may contain the optional metadata columns Tissue,Factor,Condition and Treatment. In
order to allow the user to specify custom metadata for their plotting and reporting, the additional addMetadata argument

ChIPQCreport/ChIPQC.html
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can be supplied with a data frame of sample IDs and associated additional metadata. The first column for addMetadata
data frame must be SampleID and remaining columns may be categorical or discrete data.

Here, first we illustrate the relationship between RIP and cross coverage scores by including RIP metrics as metadata and
setting the column as colourBy argument.

Then we can use addMetadata argument to group SSD by their ChIP type to highlight higher SSD scores typically seen
to epigenetic marks.

metrics <- QCmetrics(resExperiment)

metricsMetadata <- data.frame(SampleID=rownames(metrics),RIP =metrics[,"RiP%",drop=T])

plotCC(resExperiment,addMetaData = metricsMetadata,colourBy="RIP")
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metricsMetadata <- data.frame(SampleID=rownames(metrics),ChIPType=

c(rep("Epigenetic Mark",1),

rep("Transcription Factor",1),

rep("Epigenetic Mark",4),

rep("Transcription Factor",4),

rep("Input",2),

rep("Transcription Factor",1),

rep("Epigenetic Mark",2),

rep("Transcription Factor",2),

rep("Epigenetic Mark",2)))

plotSSD(resExperiment,addMetaData = metricsMetadata,facetBy="ChIPType")

## Using Sample as id variables
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7.2 Some plotting tips

The plotCC function produces a line plot with the section excluded from identification of fragment length cross-coverage
score shaded in grey. To remove this the plotCC ggplot object maybe altered and re-plotted.

ccplot <- plotCC(resExperiment)

ccplot$layers <- ccplot$layers[1]

ccplot
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Another useful tip is expanding or narrowing the Y and X axis limits post plotting. This can be done by simply adding
the xlim() and ylim() arguments

plotFribl(resExperiment) + ylim(0,15)

## Using Sample as id variables
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plotCoverageHist(resExperiment) + xlim(0,250)

## Scale for ’x’ is already present. Adding another scale for ’x’, which will replace the existing

scale.
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9 Session Info

sessionInfo();

## R version 3.1.3 (2015-03-09)

## Platform: x86_64-apple-darwin10.8.0 (64-bit)

## Running under: OS X 10.7.5 (Lion)

##

## locale:

## [1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8

##

## attached base packages:

## [1] stats4 parallel stats graphics grDevices utils datasets

## [8] methods base

##

## other attached packages:

## [1] ChIPQC_1.2.2 DiffBind_1.12.3 limma_3.22.7

## [4] ggplot2_1.0.1 GenomicAlignments_1.2.2 Rsamtools_1.18.3

## [7] Biostrings_2.34.1 XVector_0.6.0 GenomicRanges_1.18.4

## [10] GenomeInfoDb_1.2.5 IRanges_2.0.1 S4Vectors_0.4.0

## [13] BiocGenerics_0.12.1 knitr_1.9

##

## loaded via a namespace (and not attached):

## [1] amap_0.8-14 base64enc_0.1-2 BatchJobs_1.6

## [4] BBmisc_1.9 Biobase_2.26.0 BiocParallel_1.0.3

## [7] BiocStyle_1.4.1 bitops_1.0-6 brew_1.0-6

## [10] BSgenome_1.34.1 caTools_1.17.1 checkmate_1.5.2

## [13] chipseq_1.16.0 codetools_0.2-10 colorspace_1.2-6

## [16] DBI_0.3.1 digest_0.6.8 edgeR_3.8.6

## [19] evaluate_0.6 fail_1.2 foreach_1.4.2

## [22] formatR_1.1 gdata_2.13.3 gplots_2.16.0

## [25] grid_3.1.3 gtable_0.1.2 gtools_3.4.2

## [28] highr_0.4.1 hwriter_1.3.2 iterators_1.0.7

## [31] KernSmooth_2.23-14 labeling_0.3 lattice_0.20-30

## [34] latticeExtra_0.6-26 MASS_7.3-39 munsell_0.4.2

## [37] Nozzle.R1_1.1-1 plyr_1.8.2 proto_0.3-10

## [40] RColorBrewer_1.1-2 Rcpp_0.11.6 RCurl_1.95-4.6

## [43] reshape2_1.4.1 RSQLite_1.0.0 rtracklayer_1.26.3

## [46] scales_0.2.4 sendmailR_1.2-1 ShortRead_1.24.0

## [49] stringr_0.6.2 tools_3.1.3 XML_3.98-1.1

## [52] zlibbioc_1.12.0
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