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“Typical” ChiP-Seq Analysis workflow

Sequencing Downstream analysis

-

— Add biological context (e.g.

QC/ Data viz / Filter | FASTQC Annotate peaks to genes)
l — Custom analyses specific to
BWA biological question
Mapping Bowtie
Tophat — Integration with other data
 Same platform
Peak * Different platform(!)

Primary analysis calling

<—I<—-

QC / Data Viz / Filter

- ChiPQC



input_chr3.tdf

treat_chr3.tdf

RefSeq Genes

cs.defaults_summits.bed

defaults_summits.bed

defaults_peaks.narrowPeak

A good ChIP-seq dataset

Characteristics we can
assess quantitatively:

. \

12_cs.defaults_peak 11a  r2_csdefaults_peak 11c
|

r1_defaults_peak_11 r_defaults_peak_12
I 1

r1_defaults_peak_11 r1_defaults_peak_12

What do we want:

BHLHE40

12_cs.defaults_peak 13
|

r1_defaults_peak_13
I

r1_defaults_peak 13

Reads in peaks
Peaks higher
than background
Genes close by?
Enough seq
depth?

Diverse library
(duplications)
Not enriched in
the control

- Good quality ChIP-seq enrichment over background



How to quantify ChiIP-seq data
quality?

ChiIP-seq guidelines and practices of the ENCODE
and modENCODE consortia.

(Landt et al — Genome Research 2012)

ChIPQC - Tom Carroll and Rory Stark (Diffbind)

ChIPQC provides workflow to generate metrics per
sample/experiment.

package SPP (for UNIX/LINUX)



What can go wrong?

* The specificity of the antibody
* poor reactivity against the intended target
e cross-reactivity with other DNA-associated
proteins.

* degree of enrichment achieved in the affinity
precipitation step.

e Biases during library preparation:
* PCR amplification biases
* Fragmentation biases

ENCODE guidelines for experiments: https://genome.ucsc.edu/ENCODE/
experiment_guidelines.html



EVALUATING CHIP-SEQ DATA
(QC)



Outline

* Distribution of Signal
— Visualisation of coverage profiles
— Fraction of reads in peaks (FRIP)
— Relative enrichment in genomic intervals (REGI)
— Signal in blacklists (FRIBL)
— Dispersion of coverage

* Clustering of Watson/Crick reads.

e Other factors affecting site discovery:
— Sequencing depth
— Duplication rate / library complexity
— Control sample
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Visualisation of coverage profiles
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http://www.bloodjournal.org/content/124/25/3719



Outline

* Distribution of Signal
— Visualisation of coverage profiles

— Fraction of reads in peaks (FRIP)

— Relative enrichment in genomic intervals (REGI)
— Dispersion of coverage

* Clustering of Watson/Crick reads.

e Other factors affecting site discovery:
— Sequencing depth
— Duplication rate / library complexity
— Control sample




Measuring global ChIP enrichment
(FRiP)

Example output from ChIPQ package:

Percentage of Reads In Peaks
A849, CTCF A549, GATA3

e useful and simple first-cut
metric for the success of the

immunoprecipitation .I .
m—

e Good quahty TF > 5% RP MCF7CTCF 7 MC%7GATA3

(guideline, known examples of

good data with FRiP < 1%
RNAPIII and ZNF274)

http://www.ncbi.nlm.nih. gov/pmc/ar‘ucles/PMC3431496/ ) Sample )




Outline

* Distribution of Signal
— Visualisation of coverage profiles

— Fraction of reads in peaks (FRIP)
— Relative enrichment in genomic intervals (REGI)

— Dispersion of coverage

* Clustering of Watson/Crick reads.

e Other factors affecting site discovery:
— Sequencing depth
— Duplication rate / library complexity
— Control sample




Enrichment in genomic intervals

Example output from ChIPQ package:
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Outline

* Distribution of Signal
— Visualisation of coverage profiles
— Fraction of reads in peaks (FRIP)
— Relative enrichment in genomic intervals (REGI)

— Dispersion of coverage

* Clustering of Watson/Crick reads.

e Other factors affecting site discovery:
— Sequencing depth
— Duplication rate / library complexity
— Control sample




Dispersion of coverage

* depth of coverage: number of
fragments at a genomic location.

e Expectation is that for an

enriched ChIP sample, depth
should show inequality in -

dispersion across the genome

Depth Base Pairs
1 3
* Build global profile of signal depth 2 4
- Measure number of base pairs with > >
given depth of signals. Z j
- Normalise to total number of reads . 5
to compare samples 2 -




Dispersion of coverage

Example output from ChIPQ package:
* Global signal profile “histogram”

Factor
s HIK4Ame1

* Enriched (ChlIP) libraries show ~ Input
higher number of bases at greater \

depths.

* Profile for inputs (no enrichment)
drops off more quickly

* Gap between sample and input W

indicates enrichment

Depth



Metric for dispersion of coverage: SSD

e SSD: Standardised Standard Deviation
of coverage

LNCAP_AR : ISI;Ttp'Lered
* Metric for assessment of dispersion 3y o -
coverage developed in htsegtools v le e
package LNCAP_E2F1
SD CE21|@ L
SSD="_ £ —
v N LNCAP_Input
. . Input_1 | i
* Provides measure of pile-up across inputForPol | @
genome LNCAP_PolCDT
_ ] ] PolCDT1 | @ *
* High for samples with enriched PolCDT2 | - @ .

regions (ChlIP)
* Low for samples with uniform
coverage (input)

| T | 1 1 1
04 0.5 0.6 0.7 0.8 09

SD of Coverage



SSD is highly influenced by blacklists

(=)
S D input_chr3.df
S E— ——— — —— - — —
—
treat_chr3 tdf
‘ ] - - _AA‘ il —— —
RefSeq Genes el - DDeee—
BHLHE40
| ) ) | )
s defaults_summits.bed
12_csdefaults_peak 11a  r2_cs.defaults_peak 11c 12_cs.defaults_peak 13
| |
defaults_summits.bed
r1_defaults_peak 11 1_defaults_peak_12 r1_defaults_peak 13
I R I
defaults_peaks.narrowPeak
r1_defaults_peak_11 r1_defaults_peak_12 r1_defaults_peak 13

Filter

Sample - ® o @ Post_Blacklist
@ Pre_Blacklist

Sample



Outline

* Distribution of Signal
— Visualisation of coverage profiles
— Fraction of reads in peaks (FRIP)
— Relative enrichment in genomic intervals (REGI)
— Dispersion of coverage

* Clustering of Watson/Crick reads.

e Other factors affecting site discovery:
— Sequencing depth
— Duplication rate / library complexity
— Control sample




Clustering of Watson/Crick reads

How to make a cross-correlation plot:
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Clustering of Watson/Crick reads

How to make a cross-correlation plot:

* Fragment length can be
estimated from data: D
. Highly enriched ChIP
— Cross-correlations -
Correlation of reads on ‘ ‘

positive and negative strand
after successive read shifts
_Cchip peak

KFivi

— Cross-coverage - Coverage :
of reads on both strand after  Prantem” peak
successive shifts of reads on L
one strand. Total area N/
covered by reads will be | O\

reduced after shifting o X

* These provide useful QC
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Clustering of Watson/Crick reads

* Cross-coverage score plots are
computed by ChIPQCR ER
package

Read types:
— Peaks

—  Duplicates
—  DAC blacklist

04

03

* ChIPQC metrics:
— FragCC = CCfragmentlength'
— RelCC = FragCC/ CC epgiength y

02

01

0.0

— RelCC > 1 good ChlP-seq T T T
Shift
* Blacklisted regions strongly
contribute to read length cross-

coverage peak

Carroll et al., Front Genet. 2014 Apr 10;5:75.



Outline

* Distribution of Signal
— Visualisation of coverage profiles
— Fraction of reads in peaks (FRIP)
— Relative enrichment in genomic intervals (REGI)
— Dispersion of coverage

* Clustering of Watson/Crick reads.
e Other factors affecting site discovery:

— Sequencing depth

— Duplication rate / library complexity
— Control sample




Sequencing Depth

Peak counts depend on sequencing depth.

A
— Total Called Peaks 3 Called peaks vs sequencing depth
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Sequencing Depth: guidelines

Sharp peaks (TFs)
10M reads
2M worms and flies

Broad Peaks (Histones)

20M reads mammalian genomes
5M worms and flies

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431496/



Outline

* Distribution of Signal
— Visualisation of coverage profiles
— Fraction of reads in peaks (FRIP)
— Relative enrichment in genomic intervals (REGI)
— Signal in blacklists (FRIBL)
— Dispersion of coverage

* Clustering of Watson/Crick reads.

e Other factors affecting site discovery:
— Sequencing depth

— Duplication rate / library complexity

— Control sample




Library complexity (Duplicates)

* Duplication rates are a
useful QC metric

A - (Duplicate reads/Total

f—r—=]
—— m— Mapped Reads) *100
Pl g - Expected to be low (<~ 1%) for

Typical ChIP-seq peak inputs

* Non-Redundant Fraction
Low-complexity ChiP-seq peak (NRF)
- ENCODE guidelines:

NRF >= 0.8 for 10M reads

http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3431496/



Library complexity (Duplicates)

* Duplicates can be * Duplicates can also be

artefacts legitimate”
. . . — In highly efficient

* PCR bias: certain genomic enrichments

regions are preferentially — In deeply sequenced ChiPs
. (Duplication rate increases with

amplified sequencing depth)

* Low initial starting

* Removing these duplicates

material limits the dynamic range of
- Overamplification -> ChlIP signal
artificially enriched regions — Max signal for a base is

2*read length)-1
- Compounded by PCR bias (2%read length)



Library complexity (Duplicates)

So what to do about duplicates?
Keep in mind enrichment efficiency and read depth

Thumb-rules

- Remove duplicates prior to peak calling (some peak callers do
this by default)

- Keep duplicates for differential binding analysis

A more objective approach:

- htSeqTools package

- Estimate duplicate numbers expected for sequencing depth
using negative binomial model and attempt to identify
significantly anomalous duplicate numbers.



Outline

* Distribution of Signal
— Visualisation of coverage profiles
— Fraction of reads in peaks (FRIP)
— Relative enrichment in genomic intervals (REGI)
— Signal in blacklists (FRIBL)
— Dispersion of coverage

* Clustering of Watson/Crick reads.

e Other factors affecting site discovery:
— Sequencing depth
— Duplication rate / library complexity

— Control sample




Control sample

Use of controls highly recommended
Input DNA

— popularly used

— controls for CNVs, sequencing biases, fragmentation and shearing
biases

IgG
— as with input but also controls for non-specific binding
— but introduces new biases

Controls required for
— different types of samples (e.g. Cell lines, mice, patients)
— different treatment groups / experimental conditions



PEAK CALLING



Narrow vs Broad peaks
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Nature Reviews | Genetics

http://www.nature.com/nrg/journal/v15/n2/full/nrg3642.html



Peak Calling:
Which Peak Caller to Use?

* Transcription factor peaks: MACS is very popular
* For histone marks with spanning longer regions,
Sicer is recommended
— MACS can be used by tweaking parameters
» Several peak callers in R/Bioconductor
— e.g SPP, TPIC, BayesPeak
— Not really considered gold-standard (other than SPP)
— Often impractical: memory hungry and slow



ChiP-Seq Practical
Working with ChIP-Seq Data in R/Bioconductor

chipqc_sweave.pdf



