Introduction to Statistical Analysis

Cancer Research UK Cambridge Institute - 7th of November 2024 Luca Porcu and Chandra Chilamakuri (Bioinformatics core)

Timeline

• Morning (9.30-12.00)

- Data types, data analysis and descriptive statistics Online quiz
- Central limit theorem (CLT) ← Simulations
- Inferential statistics: estimation Simulations

○ Lunch

• Afternoon (13.00-17.00)

Inferential statistics: one-sample tests -−−−−−→ Exercises

Inferential statistics: two-sample tests • Exercises

The Scope of Statistics

1. Study of populations

2. Study of variation

3. Study of methods of the reduction of data

R.A. Fisher, Statistical Methods for Research Workers - Introduction, First Edition 1925

Data types

Data types

Data analysis: descriptive statistics

- Here, the data are analyzed on their own terms, essentially without extraneous assumptions.
- The principal aim is the organization and summarization of the data in ways that bring out their main features and clarify their underlying structure.

E.L. Lehmann, George Casella, Theory of Point Estimation, Second Edition

Descriptive statistics in preclinical research

		Table 7. Number	r of stuc	lies reporting t	he sex of th	e animals.
		Species	No	Yes	Unclear	Yes (%)
•	Baseline data	Mouse (n = 72)	24	47	1	65
		Primate (n = 86)	30	55	1	64
	(e.g. strain, sex, age, weight, housing)	Rat (n = 113)	15	98	0	87
	(-8	All (n = 271)	69	200	2	74†
Kilken Ind Rep	ny C, Parsons N, Kadyszewski E, Festing MFW, Cuthill IC, et al. (2009) Survey of the Quality of Experimental Design, Statistical Analysis orting of Research Using Animals. PLoS ONE 4(11): e7824. doi:10.1371/journal.pone.0007824	[†] 74% (200/271) of all s experiment.	tudies rep	ported the sex of th	ne animals used	l in the mair
		Vec	ctor ction	Confirm enzyme expression	Conditioned Place Preference	Blood Pressure
	Evnorimontal docign	Acclimate on arrival	ł	¥	¥	♦
•	Lipermental design	1 week	3 wee	eks	\longrightarrow	;
	(a g comple size bleeking treetment)	~ age (Weeks): 6 - 7	8	11	12 – 14	17
	(e.g. sample size, blocking, treatment)	6	A			
		- And for	(and			
		_ 1.0-				
		TMZ and CX-4945	<u>_</u>			
•	Outcomes (e.g. distribution,	start point	L		_ ~	atrol (n=6)
		mula	L	L _n	TM	Z 3 cycles an
	length of follow-up, number of events)	5			day	treatment 6)
		0.0	15 2	20 25 30 3	<mark>— Ц</mark> (" i5 40	
			ays post-i	inoculation		

Random events.

Empirical phenomena which have the following two features:

- 1. They do not have deterministic regularity (i.e. observations of them do not always yield the same outcome)
- 2. They possess some statistical regularity, indicated by the statistical stability of their frequencies.

Shiryaev Albert N., Probability-1, Third Edition

Random events.

"It is our task to detect regularity in the presence of confusion, order in the presence of chaos."

Edwards A.W.F., Likelihood (Expanded Edition), 1992

Mathematical analysis of random events.

- Random events are more or less adequately described by statistical distributions (e.g. normal distribution).
- Statistical regularity is captured by parameters of statistical distributions (e.g. mean and standard deviation of the normal distribution).

Probability distribution

Def: In probability theory and statistics, a **probability distribution** is the *mathematical function* that gives the *probabilities* of occurrence of different possible *outcomes* for an experiment.

https://en.Wikipedia.org/wiki/Probability_distribution, 15th August 2024

Binomial distribution

Def: the **binomial distribution** with parameters *n* and *p* is the discrete statistical distribution of the number of successes in a sequence of *n* independent trials. Each trial (Bernoulli trial) has a binary outcome: success with probability *p* and failure with probability 1-*p*.

Assumptions of the binomial distribution

- The outcome of each trial is binary (0/1)
- Each Bernoulli trial is independent (i.e. the outcome of each trial does not depend on the outcome of the other trials)
- The probability of success *p* is constant (i.e. it does not change for each trial)

Poisson distribution

Def: the **Poisson distribution** with parameter λ is the discrete probability distribution of the number of events that occur randomly and uniformly in a fixed time interval or in a given area.

Assumptions of the Poisson distribution

- $\circ~$ The outcome is a count [0,1,...,k,...]
- Independence of events: the occurrence of one event does not affect the probability that another event will occur

 Events occur at a uniform rate over the entire time period or area. λ is the expected (mean) number of events per time/area unit

Normal distribution

Def: a normal distribution or Gaussian distribution is a type of continuous probability distribution. It is determined by two parameters (μ , σ).

- the parameter µ is the mean or expectation of the distribution (and also its median and mode)
- 2) the parameter $\boldsymbol{\sigma}$ is its standard deviation

Aidan Lyon, Why are Normal Distributions Normal?, The British Journal for the Philosophy of Science 2014 65:3, 621-649

Other statistical distributions

Beta distribution

Gamma distribution

Log-normal distribution

Weibull distribution

- Here, it is assumed that data are generated by a statistical distribution with parameters η , θ ,..., ψ .
- The principal aim is to infer information about η , θ ,..., ψ .

E.L. Lehmann, George Casella, Theory of Point Estimation, Second Edition

...to be clear about frequentist inference

Data analysis: bayesian inference

A practical example of bayesian inference

Berry DA. Bayesian clinical trials. Nat Rev Drug Discov. 2006 Jan;5(1):27-36. doi: 10.1038/nrd1927. PMID: 16485344

Data analysis: bayesian inference

The recourse to the prior distribution on the parameters of a model is questionable. There is in fact a major step from the notion of an *unknown* parameter to the notion of a *random* parameter.

Nominal data

Histotype	Ν	%
Serous	48	41.7
Undifferentiated	22	19.1
Endometrioid	21	18.3
Mucinous	16	13.9
Clear cell	8	7.0

Serous is the mode. The mode is the category that appears most often in a set of data values

Pie chart

serous
undifferentiated
endometrioid
mucinous
clear cell

Ordinal data

Grading	Ν	%
G1	48	45.7
G2	18	17.1
G3	23	21.9
G4	16	15.2

G

G1 is the mode.

G2 is the median.

The median is the category separating the higher half from the lower half of a data sample

Bar chart

Grading

Discrete data

N. of metastases	Ν	%
0	20	16.3
1	45	36.6
2	30	24.4
3	12	9.8
4	10	8.1
5	5	4.1
6	1	0.8

- 1 metastasis is the mode.
- 1 metastatis is the median.
- 1.7 is the mean number of metastases.

Continuous data

Weight (kg)

Quantitative data

Properties of the mean

- $\circ \sum_{i} (a_i \boldsymbol{\mu}) = 0$
- $\sum_{i} (a_i \mu)^2 < \sum_{i} (a_i x)^2, x \neq \mu$

• Linearity

• Associative property

Quantitative data

Measures of variability

- \circ ($\sum_i |a_i M|$)/n, where M is a measure of central tendency
- $V[(\sum_i |a_i M|^2)/n]$, if M = μ , it is called standard deviation (σ)
- Interquartile range (IQR)

ID mouse	Day 21, mm ³	Day 23, mm ³
M101	260	270
M102	234	240
M103	400	470
M104	345	350
M105	450	460
M106	200	250
M107	500	510

Scatter plot

Die 21

Take home message:

Paired data are not independent. They correlate.

Online quiz

Exercises

http://bioinformatics-core-shared-training.github.io/IntroductionToStats

Central limit theorem (CLT)

Let $X_1,...,X_n$ be independent and identically distributed random variables with mean μ and standard deviation σ

The sample mean \dot{x} is a statistic obtained by calculating the arithmetic average of the values of $X_1, ..., X_n$ in a sample

CLT: \dot{x} is distributed as N (μ , σ /V(n)) as the sample size n gets larger

Central limit theorem (CLT)

The usefulness of the CLT is that the distribution of sample means approaches normality regardless of the distribution of the population

Confidence intervals

In frequentist inference, a confidence interval (CI) is a **range of estimates** for an unknown parameter Θ .

It is computed at a designated confidence level (e.g., 95% CI). The confidence level represents the long-run proportion of CIs that theoretically contain the true value of the parameter Θ.

For example, out of all intervals computed at the 95% level, 95% of them should contain the parameter's true value.

https://en.wikipedia.org/wiki/Confidence_interval, 15th August 2024

Confidence intervals for the normal distribution

Normal data, σ known: one sample z-confidence interval

Sample mean \dot{x} is <u>exactly</u> distributed according to N (μ , σ /V(n))

95% CI = $\dot{x} \pm z_{0.975} \cdot \sigma / v(n)$, where $z_{0.975} \simeq 1.96$

If you do not know σ

Student's t-distribution

Let $x_1, ..., x_n$ be independent and identically distributed observations from a normal distribution with mean μ and std σ .

The sample mean and unbiased sample standard deviation are given by: $\dot{x} = (x_1 + ... + x_n)/n$ [biological signal collected in the sample] $std^2 = (1/(n-1)) \Sigma_i (x_i - x_m)^2$ [noise collected in the sample]

(x - μ) / (std / Vn) ~ t_{n-1} is distributed according to a Student's *t*-distribution with n-1 degrees of freedom

The *t*-statistic has a probability distribution that not depends on the unknown σ

Student's *t*-distribution

Confidence intervals for the normal distribution

Normal data, σ unknown: one sample *t*-confidence interval

Sample mean $\dot{x} - \mu$ is <u>exactly</u> distributed according to [std/v(n)] $\cdot t_{n-1}$

95% CI = $\dot{x} \pm t_{n-1, 0.975} \cdot \text{std/v(n)}$. We use the *t*-tables to obtain these "critical" values

If data are not normally distributed...

Consequence of CLT

t-distribution methods are robust when the sample size is large ($n \ge 30$). The data should not have extreme outliers or evidence of severe skewness.

For small samples it is risky to use *t*-confidence intervals. Only use if you are sure the population is roughly normally distributed and the sample has no outliers and very little skew. Otherwise, other methods (e.g. bootstrap) should be used.

Simulations

Exercises

http://bioinformatics-core-shared-training.github.io/IntroductionToStats/practical.html

Shiny web application

https://bioinformatics.cruk.cam.ac.uk/apps/stats/central-limit-theorem

Hypothesis Testing

A hypothesis is a statement about the population(s).

Example n.1: Carboplatin induced response in at least 70% of NSCLC patients Example n.2: The mean pressure is the same in C57BL/6J and DBA/2J mice Example n.3: The two populations A and B have the same height distribution

The goal of a hypothesis test is to decide, based on data collected, which of two complementary hypotheses is true.

Example n.1: H_0 : RR < 0.70; H_1 : RR \ge 0.70

Example n.2: $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu$

Example n.3: $H_0: D_A = D_B; H_1: D_A \neq D_B$

Hypothesis Testing

H₀: null hypothesis H₁: alternative hypothesis

Ρ

r

0

С

е

d

u

r

е

There is no symmetry between H_0 and H_1 :

1st step: We assume H_0 to be true

2st step: The strength of evidence provided by the data **against** H₀ is measured

3st step: If a contradiction is found, H₁ is accepted. If a contradiction is not found, the method of proof fails and the hypothesis H₀ could be either true or false

Strength of evidence provided by the data

The p-value is the statistical index used to measure the strength of evidence against H₀.

Evidence provided by the data

 $H_0: \theta = 0, \theta \in \{0, 1, 2\}$ $H_1: \theta = 1, 2$

Distribution of the test statistic under H_0 :

t _s	1	2	3	4
Prob (t _s H ₀)	0.980	0.005	0.005	0.010
P-value	1.00	0.01	0.01	0.020

An α significance level (e.g. 0.05) is simply a decision rule as to which p-values will cause one to reject the null hypothesis. In other words, it is merely a decision point as to how weird the data must be before rejecting the null model. If the p-value is less than or equal to α , the null is rejected. Implicitly, an α level determines what data would cause one to reject H₀ and what data will not cause rejection. The α level rejection region is defined as the set of all data points that have a p-value less than or equal to α .

The two types of errors in hypothesis testing

		Deci	sion
		Accept H ₀	Reject H _o
Truth	H ₀	Correct decision	Type I error (a)
rutn	H ₁	Туре II error (β)	Correct decision

- 1. If the hypothesis test incorrectly decides to reject H_0 , then the test has made a Type I error (i.e. false positive decision)
- 2. If the hypothesis test incorrectly decides to not reject H₀, then the test has made a Type II error (i.e. false negative decision)

Statistical power

The power $(1-\beta)$ of a hypothesis test is the probability to reject the null hypothesis (H_0) if H_1 is true. It is a function of alternative simple hypotheses.

Distribution of the test statistic under H_0 :

t _s	1	2	3	4	┝
Prob (t _s H ₀)	0.980	0.005	0.005	0.010	1
P-value	1.00	0.010	0.010	0.020	

Rejection region of the test with α significance level= 0.05

Distribution of the test statistic under H_1 :

t _s	1	2	3	4	
Prob ($t_s \theta = 1$)	0.100	0.200	0.200	0.500	$\longrightarrow (1 - \beta \mid \theta = 1) = 0.900$
Prob ($t_s \theta = 2$)	0.098	0.001	0.001	0.900	$\longrightarrow (1-\beta \mid \theta = 2) = 0.902$

Statistical power

Distribution-free tests

A distribution-free test is one which makes **no assumptions** about the precise form of the sampled population or the assumptions are never so elaborate as to imply a population whose distribution is **completely specified**.

Distribution-free tests	Distribution-dependent tests
Sign test	One-sample Student's <i>t</i> -test
Wilcoxon signed-rank test	Two-sample Student's <i>t</i> -test
Wilcoxon rank-sum test	Unequal variance <i>t</i> -test (i.e. Welch's <i>t</i> -test)

- Bradley, J.V. (1968) Distribution-Free Statistical Tests. Prentice-Hall, Englewood Cliffs, NJ
- Kendall, M.G. and R.M.Sundrum, Distribution-Free Methods and Order Properties, Review of the International Statistical Institute, 3 (1953), 124-134

Let m > 1 the number of null hypotheses $H_1, ..., H_m$ to be tested.

H _i	Not rejected	Rejected	Total
True	U	V	m _o
False	Т	S	m-m ₀
Total	W	R	m

Familywise error rate (FWER)

P(V>0), which is the probability of committing al least one Type I error.

Notes:

- If all hypothesis tests are conducted with a significance level of α , the FWER $\geq \alpha$
- the FWER reduces to the common Type I error rate for m=1.

Under the assumption of independent statistical hypotheses.

Controlling Familywise error rate (FWER)

• Bonferroni method

- Simultaneously testing
statistical hypothesesH1H2....HmHm
- Let m > 1 the number of null hypotheses H_1, \dots, H_m to be tested.
- Each p-value (p_i, i=1,...m) is compared to the threshold α / m. Then FWER $\leq \alpha$.
- $\checkmark~$ No assumption is requested.

Sidak method

- Let m > 1 the number of null hypotheses H_1, \dots, H_m to be tested.
- Each p-value (p_i, i=1,...m) is compared to the threshold $\alpha_{SIDAK} = 1 (1 \alpha)^{1/m}$. Then FWER $\leq \alpha$.
- ✓ Very strong assumption: hypothesis tests are independent.

Controlling Familywise error rate (FWER)

Sequential Bonferroni method (Holm's method)

- Let m > 1 the number of null hypotheses H_1, \dots, H_m to be tested.
- Sort p-values (p_i, i=1,...m) $p_1 \le p_2 \le ... \le p_m$.
- Each p-value (p_i, i=1,...m) is compared to the threshold α / (m-i+1). Reject the corresponding H_i hypothesis until the p-value is no longer significant. Then FWER $\leq \alpha$.
- ✓ No assumption is requested. Holm's method more powerful than Bonferroni.

• Sequential Sidak method

The only difference respect to the sequential Bonferroni method are the thresholds $\alpha_{SIDAK,i} = 1 - (1 - \alpha)^{1/(m-i+1)}$. Then FWER $\leq \alpha$.

✓ Very strong assumption: hypothesis tests are independent.

One-sample location tests

One-sample Student's t-test

Assumptions:

- 1. the data are continuous
 - 2. sample data have been randomly sampled from a population
 - 3. independent observations x_i, i=1,...,n
 - 4. the population is normally distributed

Hypotheses to test:

- H_0 : mean of the population distribution $\mu = \mu_0$
- $H_1: \quad \mu \neq \mu_0$

Test statistic:
$$t=rac{ar{x}}{s/s}$$

- x = sample mean
- s = sample standard deviation

One-sample Student's t-test

Distribution of the test statistic: *t*-distribution with n-1 degrees of freedom

Sign test

Assumptions:

- 1. the data are continuous
- 2. sample data have been randomly sampled from a population
- 3. independent observations x_i, i=1,...,n

Hypotheses to test:

- H₀: median of the population distribution $\theta = \theta_0$
- $\mathsf{H}_1: \quad \boldsymbol{\theta} \neq \boldsymbol{\theta}_0$

Test statistic: number of values above (or below) $\boldsymbol{\theta}_0$.

Sign test

Distribution of the test statistic: binomial distribution, X ~ Bin (n, 0.5)

In case of values equal to θ_0 , discarde these values and apply the sign test only to the values above or below θ_0 .

Wilcoxon signed-rank test

Assumptions:

- 1. the data are continuous
 - 2. sample data have been randomly sampled from a population
 - 3. independent observations x_i, i=1,...,n
 - 4. the population distribution is symmetric

Hypotheses to test:

- H_0 : median/mean of the population distribution $\theta = \theta_0$
- $\mathsf{H}_1: \quad \boldsymbol{\theta} \neq \boldsymbol{\theta}_0$

Test statistic: sum of the positive signed ranks.

Wilcoxon signed-rank test

n:	3
Raw data:	67, -12, 55
$oldsymbol{ heta}_0$:	50
Absolute differences:	5, 17, 62
Signed ranks:	+1, +2, -3
Test statistic:	+3

Distribution of the test statistic:

P(+1,+2,+3) = P(+1,+2,-3) = P(+1,-2,+3) =P(+1,-2,-3) = P(-1,+2,+3) = P(-1,+2,-3) =P(-1,-2,+3) = (-1,-2,-3) = 1/8, hence...

Wilcoxon signed-rank test

Distribution of the test statistic:

Sum of signed ranks	0	1	2	3	4	5	6
Probability	1/8	1/8	1/8	2/8	1/8	1/8	1/8

Two-sided p-value:1.0One-sided p-value:5/8=0.625

At the significance level of 0.05, we can't reject the null hypothesis (θ =50).

Take home message

The Wilcoxon signed-rank test is more powerful than the sign test because it makes use of the magnitudes of the differences rather than just their sign.

It should be the preferred method, but it makes a stronger assumption: the distribution of the differences is symmetric.

In case this assumption is doubtful, the sign test should be used. Graphical display is *recommended*.

Take home message

The one-sample location tests could be used for paired data samples.

Each paired data is summarized by the difference and the one-sample location tests are applied to the differences.

Experimental unit	Paired data	Difference
1	23-55	-32
•••	•••	•••
k	107-100	7

Exercises

Exercises

http://bioinformatics-core-shared-training.github.io/IntroductionToStats/practical.html

Shiny web application

https://bioinformatics.cruk.cam.ac.uk/stats/shinystats/

Two-sample location tests

Two-sample Student's t-test

Assumptions:

- 1. data are continuous
 - 2. random sampling from the two populations
 - 3. independent observations x_i , i=1,..., n_1 and y_i , j=1,..., n_2
 - 4. the two population distributions are normal
 - 5. equal variances s_1^2 and s_2^2

Hypotheses to test:

 $H_0: μ_1 = μ_2$ $H_1: μ_1 ≠ μ_2$

Test statistic:

 $t = \frac{\bar{x_1} - \bar{x_2}}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \qquad \text{where } S_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$

The statistic t has a Student's *t* distribution with n_1+n_2-2 degrees of freedom.

Unequal variance *t*-test (i.e. Welch's *t*-test)

Assumptions:

- 1. data are continuous
 - 2. random sampling from the two populations
 - 3. independent observations x_i , i=1,..., n_1 and y_i , j=1,..., n_2
 - 4. the two population distributions are normal

Hypotheses to test:

 $H_0: \quad \mu_1 = \mu_2$

 $\mathsf{H}_1: \quad \boldsymbol{\mu}_1 \neq \boldsymbol{\mu}_2$

Test statistic:

$$=\frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

t

The statistic t has a Student's *t* distribution with degrees of freedom:

$$\approx \frac{\left(\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}\right)^2}{\frac{s_1^4}{N_1^2\nu_1} + \frac{s_2^4}{N_2^2\nu_2}}$$

where $v_i = n_i - 1$, i=1,2

ν

Student's t-test and Welch's t-test

n ₁	n ₂	S ₁	S ₂	t-test *	Unequal *
11	11	1	1	0.052	0.051
11	11	4	1	0.064	0.054
11	21	1	1	0.052	0.051
11	21	4	1	0.155	0.051
11	21	1	4	0.012	0.046
25	25	1	1	0.049	0.049
25	25	4	1	0.052	0.048

* Type I error rate for the *t*-test and unequal variance *t*-test with nominal type I error of 0.05

When sample sizes are unequal, the Type I error probabilities of the Student's *t*-test is decidedly influenced by unequal variances. Similar results have been found for type II error probabilities and statistical power

Take home message

- Student's *t*-test is robust under violation of homogeneity of variance provided sample sizes are equal.
- When sample size are unequal the type I error, type II error and statistical power of the Student's *t*-test are decidedly influenced by unequal variances.
- Even when the variances are identical, the Welch's *t*-test performs well in terms of type I error, type II error and statistical power.

Take home message

- Unless an argument based on logical, physical, or biological grounds can be made as to why the variances are very likely to be identical for the two populations, the Welch's *t*-test should be applied.
- It is not recommended to pre-test for equal variances and then choose between Student's t-test or Welch's t-test *.
 Graphical display is recommended to qualitatively evaluate the difference between sample variances.

^{*} Zimmerman DW. A note on preliminary tests of equality of variances. Br J Math Stat Psychol. 2004 May;57(Pt 1):173-81. doi: 10.1348/000711004849222. PMID: 15171807

If the assumption of normality of the underlying populations is violated?

Wilcoxon rank-sum test

Assumptions: 1. data are ordinal or continuous

- 2. random sampling from the two populations
- 3. independent observations x_i , $i=1,...,n_1$ and y_i , $j=1,...,n_2$

Hypotheses to test:

- H_0 : the population distributions are the same (G=F).
- $H_1: G \neq F$ (two-sided H_1) or $G < F^*$ (one-sided H_1) or $G > F^\circ$ (one-sided H_1).
 - * G is shifted to the left of F
 - ° G is shifted to the right of F

Test statistic: sum of the ranks from one of the two groups.

Calculation of the test statistic

D mouse	Group	Outcome	Rank	Sum rank	Average rank	Sum of rai	nks
1	А	0	1			Group A:	162.5
5	А	0	2	10	2 5	Group B:	302.5
8	А	0	3	10	2.5		
14	А	0	4				
6	А	1	5				
9	А	1	6				
11	А	1	7	45	7 5		
12	А	1	8	45	7.5		
15	А	1	9				
21	В	1	10				
2	А	2	11				
7	А	2	12	50	10 E		
24	В	2	13	50	12.5		
25	В	2	14				
3	А	3	15				
13	А	3	16				
16	В	3	17				
20	В	3	18	126	18		
23	В	3	19				
26	В	3	20				
29	В	3	21				
4	А	4	22				
17	В	4	23				
18	В	4	24	120	24		
19	В	4	25				
28	В	4	26				
22	В	5	27	55	27 E		
30	В	5	28	22	27.5		
27	В	7	29	29	29		
10	А	8	30	30	30		

Distribution of the test statistic

Group 1, ranks	3,4,5	2,4,5	1,4,5	2,3,5	1,3,5
Test statistic	12	11	10	10	9
Probability under H ₀	0.1	0.1	0.1	0.1	0.1
Group 1, ranks	2,3,4	1,3,4	1,2,4	1,2,3	1,2,5
Test statistic	9	8	7	6	8
Probability under H _o	0.1	0.1	0.1	0.1	0.1

 Simulation: rank j as the same probability to be assigned to one group or the other.

 For large samples, a normal approximation with known mean and variance can be applied.

Distribution-free tests vs t-tests

Situations which may suggest the use of distribution-free tests:

- 1. When one outcome has a distribution other than normal.
- 2. When the data are **ordered** with many ties or are rank ordered.
- 3. When the data has **notable outliers**.
- 4. When there is a **small sample size**.
Data transformations

We can transform the data mathematically...

 to make them fit the normality more closely

• to obtain more similar variances

to handle outliers

The most common used transformations

We can transform the data mathematically into...

- 1. the logarithm $(x_i > 0, i=1,...n)$
- 2. the square root $(x_i \ge 0, i=1,...n)$
- 3. the reciprocal $(x_i > 0, i=1,...n)$

Take home message:

- These transformations could be useful to obtain normality, similar variance and handling outliers
- The best choice depends on the relationship between variability and mean. Graphical display of data is useful to choose the best transformation
- Not all data can be transformed successfully

Hypothesis to be tested after data transformations

Assumptions: 1. Student's *t*-test assumptions or

2. Welch's t-test assumptions

Hypotheses to test:

- H_0 : The population distributions are the same (G=F) **
- H₁: G ≠ F (two-sided H₁) or G < F * (one-sided H₁) or G > F ° (one-sided H₁) * G is shifted to the left of F ° G is shifted to the right of F

Test statistic: Student's test statistic or Welch's test statistic

Hypothesis to be tested after data transformations

Properties of the log-normal distribution

- Mean log-normal: $\exp(\mu + \sigma^2/2)$
- Median log-normal: exp(μ)

Consequences

- If $\mu_1 = \mu_2$ then Median₁ = Median₂
- If $\mu_1 = \mu_2$ and $\sigma_1 \neq \sigma_2$ then Mean₁ \neq Mean₂

Exercises

Exercises

http://bioinformatics-core-shared-training.github.io/IntroductionToStats/practical.html

Shiny web application

https://bioinformatics.cruk.cam.ac.uk/stats/shinystats/